Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Dec 15;272(3):659–664. doi: 10.1042/bj2720659

Translation of preprochymosin in vitro. Evidence for folding of prochymosin to the native conformation.

A Sheikh 1, R B Freedman 1
PMCID: PMC1149759  PMID: 2268293

Abstract

1. The cDNA coding for preprochymosin has been sub-cloned into the transcription/translation vector pGEM-3Z, the T7 promoter used to transcribe the gene and the product expressed in an 'in vitro' cell-free system comprising rabbit reticulocyte lysate and dog pancreatic microsomes. 2. Translations in various conditions, and analyses of the translation product in reducing and non-reducing conditions, indicate that oxidizing translation conditions and the cleavage of the N-terminal 'pre-' sequence are essential for generation of a disulphide-bonded translation product. 3. The disulphide-bonded translation product was resistant to proteinases, as expected for a translation product segregated within microsomal vesicles; in the presence of detergent to solubilize the membranes, the product was not readily susceptible to proteolysis, and was converted to a proteinase-resistant core fragment. 4. Segregated prochymosin, synthesized in reducing conditions, was completely degraded by proteinases under similar conditions. 5. Proteinase treatment of purified recombinant prochymosin gave rise to a proteinase-resistant fragment of similar Mr, suggesting that the disulphide-bonded product of translation in vitro was correctly folded. 6. The translocated, disulphide-bonded and folded prochymosin could be converted into pseudochymosin at pH 2.0, and addition of chymosin to the activation mixture resulted in increased pseudochymosin production.

Full text

PDF
659

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad F., McPhie P. Characterization of a stable intermediate in the unfolding of diazoacetylglycine ethyl ester--pepsin by urea. Can J Biochem. 1979 Aug;57(8):1090–1092. doi: 10.1139/o79-139. [DOI] [PubMed] [Google Scholar]
  2. Austen B. M., Hermon-Taylor J., Kaderbhai M. A., Ridd D. H. Design and synthesis of a consensus signal sequence that inhibits protein translocation into rough microsomal vesicles. Biochem J. 1984 Nov 15;224(1):317–325. doi: 10.1042/bj2240317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bulleid N. J., Freedman R. B. Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes. Nature. 1988 Oct 13;335(6191):649–651. doi: 10.1038/335649a0. [DOI] [PubMed] [Google Scholar]
  4. Bulleid N. J., Freedman R. B. The transcription and translation in vitro of individual cereal storage-protein genes from wheat (Triticum aestivum, cv. Chinese Spring). Evidence for translocation of the translation products and disulphide-bond formation. Biochem J. 1988 Sep 15;254(3):805–810. doi: 10.1042/bj2540805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bulleid N. J., Sheikh A., Freedman R. B. Analysis of conformation of mutant proteins by studying in vitro translation products. Biochem Soc Trans. 1989 Dec;17(6):1078–1079. doi: 10.1042/bst0171078. [DOI] [PubMed] [Google Scholar]
  6. Dottavio-Martin D., Ravel J. M. Radiolabeling of proteins by reductive alkylation with [14C]formaldehyde and sodium cyanoborohydride. Anal Biochem. 1978 Jul 1;87(2):562–565. doi: 10.1016/0003-2697(78)90706-6. [DOI] [PubMed] [Google Scholar]
  7. Emtage J. S., Angal S., Doel M. T., Harris T. J., Jenkins B., Lilley G., Lowe P. A. Synthesis of calf prochymosin (prorennin) in Escherichia coli. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3671–3675. doi: 10.1073/pnas.80.12.3671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Foltmann B. Gastric proteinases--structure, function, evolution and mechanism of action. Essays Biochem. 1981;17:52–84. [PubMed] [Google Scholar]
  9. Foltmann B., Pedersen V. B. Comparison of the primary structures of acidic proteinases and of their zymogens. Adv Exp Med Biol. 1977;95:3–22. doi: 10.1007/978-1-4757-0719-9_1. [DOI] [PubMed] [Google Scholar]
  10. Foltmann B., Pedersen V. B., Jacobsen H., Kauffman D., Wybrandt G. The complete amino acid sequence of prochymosin. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2321–2324. doi: 10.1073/pnas.74.6.2321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldenberg D. P., Creighton T. E. Gel electrophoresis in studies of protein conformation and folding. Anal Biochem. 1984 Apr;138(1):1–18. doi: 10.1016/0003-2697(84)90761-9. [DOI] [PubMed] [Google Scholar]
  12. Harris T. J., Lowe P. A., Lyons A., Thomas P. G., Eaton M. A., Millican T. A., Patel T. P., Bose C. C., Carey N. H., Doel M. T. Molecular cloning and nucleotide sequence of cDNA coding for calf preprochymosin. Nucleic Acids Res. 1982 Apr 10;10(7):2177–2187. doi: 10.1093/nar/10.7.2177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jaenicke R. Folding and association of proteins. Prog Biophys Mol Biol. 1987;49(2-3):117–237. doi: 10.1016/0079-6107(87)90011-3. [DOI] [PubMed] [Google Scholar]
  14. Kaderbhai M. A., Austen B. M. Studies on the formation of intrachain disulphide bonds in newly biosynthesised bovine prolactin. Role of protein-disulphide isomerase. Eur J Biochem. 1985 Nov 15;153(1):167–178. doi: 10.1111/j.1432-1033.1985.tb09283.x. [DOI] [PubMed] [Google Scholar]
  15. Krieg P. A., Melton D. A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 1984 Sep 25;12(18):7057–7070. doi: 10.1093/nar/12.18.7057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Mellor J., Dobson M. J., Roberts N. A., Tuite M. F., Emtage J. S., White S., Lowe P. A., Patel T., Kingsman A. J., Kingsman S. M. Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene. 1983 Sep;24(1):1–14. doi: 10.1016/0378-1119(83)90126-9. [DOI] [PubMed] [Google Scholar]
  18. Moir D., Mao J., Schumm J. W., Vovis G. F., Alford B. L., Taunton-Rigby A. Molecular cloning and characterization of double-stranded cDNA coding for bovine chymosin. Gene. 1982 Jul-Aug;19(1):127–138. doi: 10.1016/0378-1119(82)90197-4. [DOI] [PubMed] [Google Scholar]
  19. Nishimori K., Kawaguchi Y., Hidaka M., Uozumi T., Beppu T. Expression of cloned calf prochymosin gene sequence in Escherichia coli. Gene. 1982 Oct;19(3):337–344. doi: 10.1016/0378-1119(82)90024-5. [DOI] [PubMed] [Google Scholar]
  20. Pedersen V. B., Christensen K. A., Foltmann B. Investigations on the activation of bovine prochymosin. Eur J Biochem. 1979 Mar;94(2):573–580. doi: 10.1111/j.1432-1033.1979.tb12927.x. [DOI] [PubMed] [Google Scholar]
  21. Pedersen V. B., Foltmann B. Amino-acid sequence of the peptide segment liberated during activation of prochymosin (prorennin). Eur J Biochem. 1975 Jun 16;55(1):95–103. doi: 10.1111/j.1432-1033.1975.tb02141.x. [DOI] [PubMed] [Google Scholar]
  22. Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
  23. Privalov P. L., Mateo P. L., Khechinashvili N. N., Stepanov V. M., Revina L. P. Comparative thermodynamic study of pepsinogen and pepsin structure. J Mol Biol. 1981 Oct 25;152(2):445–464. doi: 10.1016/0022-2836(81)90253-9. [DOI] [PubMed] [Google Scholar]
  24. Scheele G., Jacoby R. Conformational changes associated with proteolytic processing of presecretory proteins allow glutathione-catalyzed formation of native disulfide bonds. J Biol Chem. 1982 Oct 25;257(20):12277–12282. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES