Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Feb 1;273(Pt 3):627–634. doi: 10.1042/bj2730627

Early steps of isoprenoid biosynthesis in Escherichia coli.

D Zhou 1, R H White 1
PMCID: PMC1149810  PMID: 1996960

Abstract

The incorporation of 2H- and 13C-labelled precursors into ubiquinone-8 (Uq-8) by strains of Escherichia coli was measured in order to define the pathway for the early steps in the biosynthesis of isoprenoids in these eubacteria. Cells grown with DL-[methyl-2H6]valine were found to label both the alpha-oxoisovaleric ('alpha-ketoisovaleric') acid alpha-oxoisohexanoic ('alpha-ketoisocaproic') acid, but not the Uq-8. Since these acids are required for the biosynthesis of isoprenoids by the acetolactate pathway, the operation of this pathway in the biosynthesis of Uq-8 is excluded. Cells grown with [1,2-13C2]acetate and non-labelled glucose readily incorporated 13C2 units into fatty acids, but failed to incorporate any label into the Uq-8. Cells grown with [U-13C6]glucose and non-labelled acetate, however, were found to label both the fatty acids and the Uq-8. Oxidative cleavage with periodate/permanganate of the Uq-8 isolated from cells grown with U-13C6-labelled glucose produced laevulinic acid, which was shown to be derived from two C2 units and one C1 unit of the labelled glucose by mass-spectral analysis of the 4,5-dihydro-6-methyl-2-phenylpyridazin-3(2H)-one derivative. The results of this work indicate that the C-2 and C-3 carbon unit of pyruvate, not acetyl-CoA, is the precursor to isopentenyl pyrophosphate (IPP) in these cells; however, the labelling pattern observed is consistent with the established acetoacetate pathway of isoprenoid biosynthesis. These data, coupled with the observed lack of inhibition of the growth of E. coli by mevinolin, a specific inhibitor of 3-hydroxy-3-methylglutaryl-CoA, can be best rationalized by the biosynthesis of IPP occurring in E. coli through a series of bound intermediates.

Full text

PDF
627

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beytía E. D., Porter J. W. Biochemistry of polyisoprenoid biosynthesis. Annu Rev Biochem. 1976;45:113–142. doi: 10.1146/annurev.bi.45.070176.000553. [DOI] [PubMed] [Google Scholar]
  2. Cabrera J. A., Bolds J., Shields P. E., Havel C. M., Watson J. A. Isoprenoid synthesis in Halobacterium halobium. Modulation of 3-hydroxy-3-methylglutaryl coenzyme a concentration in response to mevalonate availability. J Biol Chem. 1986 Mar 15;261(8):3578–3583. [PubMed] [Google Scholar]
  3. Campbell I. M., Robins D. J., Kelsey M., Bentley R. Biosynthesis of bacterial menaquinones (vitamins K 2 ). Biochemistry. 1971 Aug 3;10(16):3069–3078. doi: 10.1021/bi00792a014. [DOI] [PubMed] [Google Scholar]
  4. Chang Y. Y., Cronan J. E., Jr Common ancestry of Escherichia coli pyruvate oxidase and the acetohydroxy acid synthases of the branched-chain amino acid biosynthetic pathway. J Bacteriol. 1988 Sep;170(9):3937–3945. doi: 10.1128/jb.170.9.3937-3945.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang Y. Y., Cronan J. E., Jr Genetic and biochemical analyses of Escherichia coli strains having a mutation in the structural gene (poxB) for pyruvate oxidase. J Bacteriol. 1983 May;154(2):756–762. doi: 10.1128/jb.154.2.756-762.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Das B. C., Lounasmaa M., Tendille C., Lederer E. Mass spectrometry of plastoquinones. The structure of the plastoquinones B,C and D. Biochem Biophys Res Commun. 1965 Nov 22;21(4):318–322. doi: 10.1016/0006-291x(65)90195-6. [DOI] [PubMed] [Google Scholar]
  7. De Rosa M., Gambacorta A., Gliozzi A. Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol Rev. 1986 Mar;50(1):70–80. doi: 10.1128/mr.50.1.70-80.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Endo A. 3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors. Methods Enzymol. 1981;72:684–689. doi: 10.1016/s0076-6879(81)72058-5. [DOI] [PubMed] [Google Scholar]
  9. Fujisaki S., Nishino T., Katsuki H. Biosynthesis of isoprenoids in intact cells of Escherichia coli. J Biochem. 1986 Apr;99(4):1137–1146. doi: 10.1093/oxfordjournals.jbchem.a135577. [DOI] [PubMed] [Google Scholar]
  10. Fujisaki S., Nishino T., Katsuki H. Isoprenoid synthesis in Escherichia coli. Separation and partial purification of four enzymes involved in the synthesis. J Biochem. 1986 May;99(5):1327–1337. doi: 10.1093/oxfordjournals.jbchem.a135600. [DOI] [PubMed] [Google Scholar]
  11. Grabau C., Cronan J. E., Jr Molecular cloning of the gene (poxB) encoding the pyruvate oxidase of Escherichia coli, a lipid-activated enzyme. J Bacteriol. 1984 Dec;160(3):1088–1092. doi: 10.1128/jb.160.3.1088-1092.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hamilton S. E., Recny M., Hager L. P. Identification of the high-affinity lipid binding site in Escherichia coli pyruvate oxidase. Biochemistry. 1986 Dec 16;25(25):8178–8183. doi: 10.1021/bi00373a009. [DOI] [PubMed] [Google Scholar]
  13. Ikeura R., Murakawa S., Endo A. Growth inhibition of yeast by compactin (ML-236B) analogues. J Antibiot (Tokyo) 1988 Aug;41(8):1148–1150. doi: 10.7164/antibiotics.41.1148. [DOI] [PubMed] [Google Scholar]
  14. Jackman L. M., O'Brien I. G., Cox G. B., Gibson F. Methionine as the source of methyl groups for ubiquinone and vitamin K: a study using nuclear magnetic resonance and mass spectrometry. Biochim Biophys Acta. 1967 Jun 13;141(1):1–7. doi: 10.1016/0304-4165(67)90239-5. [DOI] [PubMed] [Google Scholar]
  15. Knappe J., Blaschkowski H. P., Gröbner P., Schmitt T. Pyruvate formate-lyase of Escherichia coli: the acetyl-enzyme intermediate. Eur J Biochem. 1974 Dec 16;50(1):253–263. doi: 10.1111/j.1432-1033.1974.tb03894.x. [DOI] [PubMed] [Google Scholar]
  16. Pandian S., Saengchjan S., Raman T. S. An alternative pathway for the biosynthesis of isoprenoid compounds in bacteria. Biochem J. 1981 Jun 15;196(3):675–681. doi: 10.1042/bj1960675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Peterkofsky A. The incorporation of mevalonic acid into the N6-(delta 2-isopentenyl) adenosine of transfer ribonucleic acid in Lactobacillus acidophilus. Biochemistry. 1968 Jan;7(1):472–482. doi: 10.1021/bi00841a059. [DOI] [PubMed] [Google Scholar]
  18. RAMAN T. S., SHARMA B. V., JAYARAMAN J., RAMASARMA T. BIOSYNTHESIS OF COENZYME Q IN MICROORGANISMS. Arch Biochem Biophys. 1965 Apr;110:75–84. doi: 10.1016/0003-9861(65)90156-6. [DOI] [PubMed] [Google Scholar]
  19. Raman T. S., Rudney H., Buzzelli N. K. The incorporation of p-hydroxybenzoate and isopentenyl pyrophosphate into polyprenylphenol precursors of ubiquinone by broken cell preparations of Rhodospirillum rubrum. Arch Biochem Biophys. 1969 Mar;130(1):164–174. doi: 10.1016/0003-9861(69)90022-8. [DOI] [PubMed] [Google Scholar]
  20. Sherman M. M., Petersen L. A., Poulter C. D. Isolation and characterization of isoprene mutants of Escherichia coli. J Bacteriol. 1989 Jul;171(7):3619–3628. doi: 10.1128/jb.171.7.3619-3628.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Takatsuji H., Nishino T., Miki I., Katsuki H. Studies on isoprenoid biosynthesis with bacterial intact cells. Biochem Biophys Res Commun. 1983 Jan 14;110(1):187–193. doi: 10.1016/0006-291x(83)91278-0. [DOI] [PubMed] [Google Scholar]
  22. Wakil S. J. Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry. 1989 May 30;28(11):4523–4530. doi: 10.1021/bi00437a001. [DOI] [PubMed] [Google Scholar]
  23. White R. H. Stable isotope studies on the biosynthesis of the thiazole moiety of thiamin in Escherichia coli. Biochemistry. 1978 Sep 5;17(18):3833–3840. doi: 10.1021/bi00611a024. [DOI] [PubMed] [Google Scholar]
  24. Zhou D., White R. H. Biosynthesis of caldariellaquinone in Sulfolobus spp. J Bacteriol. 1989 Dec;171(12):6610–6616. doi: 10.1128/jb.171.12.6610-6616.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES