Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Feb 1;273(Pt 3):783–786. doi: 10.1042/bj2730783

Use of 'solid-state' promoters in the electrochemistry of cytochrome c at a gold electrode.

R Santucci 1, A Faraoni 1, L Campanella 1, G Tranchida 1, M Brunori 1
PMCID: PMC1149830  PMID: 1847624

Abstract

The direct electrochemistry of cytochrome c at a gold electrode was investigated by cyclic voltammetry using, as promoters, microperoxidase (the haem-undecapeptide obtained by hydrolysis of cytochrome c), Fe(III)-protoporphyrin IX or protoporphyrin-IX, all entrapped in a cellulose triacetate membrane. The results indicate that these immobilized systems strongly enhance the rate of electron transfer between the protein in solution and the electrode surface, and thus behave as 'solid-state' promoters, though with differing efficiencies. These results are of interest because they raise the possibility of engineering an efficient and versatile promoter active also at inert electrode surfaces.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong F. A., Allen H., Hill O., Walton N. J. Reactions of electron-transfer proteins at electrodes. Q Rev Biophys. 1985 Aug;18(3):261–322. doi: 10.1017/s0033583500000366. [DOI] [PubMed] [Google Scholar]
  2. Brunori M., Santucci R., Campanella L., Tranchida G. Membrane-entrapped microperoxidase as a 'solid-state' promoter in the electrochemistry of soluble metalloproteins. Biochem J. 1989 Nov 15;264(1):301–304. doi: 10.1042/bj2640301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campanella L., Tomassetti M., De Angelis G., Sammartino M. P., Cordatore M. A new assay for choline-containing phospholipids in amniotic fluid by an enzyme sensor. Clin Chim Acta. 1987 Nov 16;169(2-3):175–182. doi: 10.1016/0009-8981(87)90317-2. [DOI] [PubMed] [Google Scholar]
  4. Eddowes M. J., Hill A. O. Investigation of electron-transfer reactions of proteins by electrochemical methods. Biosci Rep. 1981 Jul;1(7):521–532. doi: 10.1007/BF01116300. [DOI] [PubMed] [Google Scholar]
  5. Frew J. E., Hill H. A. Direct and indirect electron transfer between electrodes and redox proteins. Eur J Biochem. 1988 Mar 1;172(2):261–269. doi: 10.1111/j.1432-1033.1988.tb13882.x. [DOI] [PubMed] [Google Scholar]
  6. HARBURY H. A., LOACH P. A. Oxidation-linked proton functions in heme octa- and undecapeptides from mammalian cytochrome c. J Biol Chem. 1960 Dec;235:3640–3645. [PubMed] [Google Scholar]
  7. HENDERSON R. W., RAWLINSON W. A. Potentiometric and other studies on preparations of cytochrome c from ox- and horse-heart muscle. Biochem J. 1956 Jan;62(1):21–29. doi: 10.1042/bj0620021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hawkridge F. M., Kuwana T. Indirect coulometric titration of biological electron transport components. Anal Chem. 1973 Jun;46(7):1021–1026. doi: 10.1021/ac60329a038. [DOI] [PubMed] [Google Scholar]
  9. Koppenol W. H., Margoliash E. The asymmetric distribution of charges on the surface of horse cytochrome c. Functional implications. J Biol Chem. 1982 Apr 25;257(8):4426–4437. [PubMed] [Google Scholar]
  10. Wilson M. T., Ranson R. J., Masiakowski P., Czarnecka E., Brunori M. A kinetic study of the pH-dependent properties of the ferric undecapeptide of cytochrome c (microperoxidase). Eur J Biochem. 1977 Jul 1;77(1):193–199. doi: 10.1111/j.1432-1033.1977.tb11657.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES