Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Jan 15;273(Pt 2):399–404. doi: 10.1042/bj2730399

Angiotensin II inhibits K(+)-induced Ca2+ signal generation in rat adrenal glomerulosa cells.

T Balla 1, Z Holló 1, P Várnai 1, A Spät 1
PMCID: PMC1149859  PMID: 1846739

Abstract

The Ca2(+)-mobilizing hormone angiotensin II (AII) dose-dependently inhibited the K(+)-induced sustained increase of cytoplasmic Ca2+ concentration in adrenal glomerulosa cells and caused a rapid decrease of cytoplasmic Ca2+ when added to cells already stimulated with K+. These effects of AII on the K(+)-induced Ca2+ signal were mimicked, although less effectively, by other Ca2(+)-mobilizing agonists such as [Arg8]vasopressin (AVP) and thapsigargin. Phorbol esters did not show such effects, nor did corticotropin (ACTH), a secretagogue acting via cyclic AMP. The K(+)-stimulated initial 45Ca2+ uptake, a measure of Ca2+ entry into glomerulosa cells, was also prevented by AII pretreatment, and was inhibited by AVP, but not by ACTH. The stimulatory effect of K+ on aldosterone production, however, was not inhibited by AII, and the AII-induced aldosterone production was further increased by increasing K+. These data indicate that AII is able to inhibit static increases in cytoplasmic Ca2+ by inhibiting Ca2+ entry through voltage-sensitive Ca2+ channels and, possibly, by activating Ca2+ extrusion from the cells. It is also concluded that the Ca2+ signal evoked by AII is very efficient in stimulating hormone secretion, and the secretory response of the cells becomes more sensitive to any further increase of Ca2+ entry through voltage-sensitive Ca2+ channels.

Full text

PDF
399

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilera G., Catt K. J. Participation of voltage-dependent calcium channels in the regulation of adrenal glomerulosa function by angiotensin II and potassium. Endocrinology. 1986 Jan;118(1):112–118. doi: 10.1210/endo-118-1-112. [DOI] [PubMed] [Google Scholar]
  2. Balla T., Baukal A. J., Guillemette G., Morgan R. O., Catt K. J. Angiotensin-stimulated production of inositol trisphosphate isomers and rapid metabolism through inositol 4-monophosphate in adrenal glomerulosa cells. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9323–9327. doi: 10.1073/pnas.83.24.9323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balla T., Szebeny M., Kanyar B., Spät A. Angiotensin II and FCCP mobilizes calcium from different intracellular pools in adrenal glomerulosa cells; analysis of calcium fluxes. Cell Calcium. 1985 Aug;6(4):327–342. doi: 10.1016/0143-4160(85)90003-x. [DOI] [PubMed] [Google Scholar]
  4. Balla T., Várnai P., Holló Z., Spät A. Effects of high potassium concentration and dihydropyridine Ca2(+)-channel agonists on cytoplasmic Ca2+ and aldosterone production in rat adrenal glomerulosa cells. Endocrinology. 1990 Aug;127(2):815–822. doi: 10.1210/endo-127-2-815. [DOI] [PubMed] [Google Scholar]
  5. Barrett P. Q., Bollag W. B., Isales C. M., McCarthy R. T., Rasmussen H. Role of calcium in angiotensin II-mediated aldosterone secretion. Endocr Rev. 1989 Nov;10(4):496–518. doi: 10.1210/edrv-10-4-496. [DOI] [PubMed] [Google Scholar]
  6. Capponi A. M., Lew P. D., Jornot L., Vallotton M. B. Correlation between cytosolic free Ca2+ and aldosterone production in bovine adrenal glomerulosa cells. Evidence for a difference in the mode of action of angiotensin II and potassium. J Biol Chem. 1984 Jul 25;259(14):8863–8869. [PubMed] [Google Scholar]
  7. Capponi A. M., Lew P. D., Vallotton M. B. Quantitative analysis of the cytosolic-free-Ca2+-dependency of aldosterone production in bovine adrenal glomerulosa cells. Different requirements for angiotensin II and K+. Biochem J. 1987 Oct 15;247(2):335–340. doi: 10.1042/bj2470335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cohen C. J., McCarthy R. T., Barrett P. Q., Rasmussen H. Ca channels in adrenal glomerulosa cells: K+ and angiotensin II increase T-type Ca channel current. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2412–2416. doi: 10.1073/pnas.85.7.2412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Di Virgilio F., Pozzan T., Wollheim C. B., Vicentini L. M., Meldolesi J. Tumor promoter phorbol myristate acetate inhibits Ca2+ influx through voltage-gated Ca2+ channels in two secretory cell lines, PC12 and RINm5F. J Biol Chem. 1986 Jan 5;261(1):32–35. [PubMed] [Google Scholar]
  10. Drummond A. H. Bidirectional control of cytosolic free calcium by thyrotropin-releasing hormone in pituitary cells. 1985 Jun 27-Jul 3Nature. 315(6022):752–755. doi: 10.1038/315752a0. [DOI] [PubMed] [Google Scholar]
  11. Duddy S. K., Kass G. E., Orrenius S. Ca2(+)-mobilizing hormones stimulate Ca2+ efflux from hepatocytes. J Biol Chem. 1989 Dec 15;264(35):20863–20866. [PubMed] [Google Scholar]
  12. Elliott M. E., Goodfriend T. L. Angiotensin alters 45Ca2+ fluxes in bovine adrenal glomerulosa cells. Proc Natl Acad Sci U S A. 1981 May;78(5):3044–3048. doi: 10.1073/pnas.78.5.3044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Enyedi P., Büki B., Muscsi I., Spät A. Polyphosphoinositide metabolism in adrenal glomerulosa cells. Mol Cell Endocrinol. 1985 Jun;41(1):105–112. doi: 10.1016/0303-7207(85)90147-9. [DOI] [PubMed] [Google Scholar]
  14. Enyedi P., Szabó B., Spät A. Reduced responsiveness of glomerulosa cells after prolonged stimulation with angiotensin II. Am J Physiol. 1985 Feb;248(2 Pt 1):E209–E214. doi: 10.1152/ajpendo.1985.248.2.E209. [DOI] [PubMed] [Google Scholar]
  15. Faragó A., Seprõdi J., Spät A. Subcellular distribution of protein kinase C in rat adrenal glomerulosa cells. Biochem Biophys Res Commun. 1988 Oct 31;156(2):628–633. doi: 10.1016/s0006-291x(88)80889-1. [DOI] [PubMed] [Google Scholar]
  16. Hausdorff W. P., Aguilera G., Catt K. J. Selective enhancement of angiotensin II- and potassium-stimulated aldosterone secretion by the calcium channel agonist BAY K 8644. Endocrinology. 1986 Feb;118(2):869–874. doi: 10.1210/endo-118-2-869. [DOI] [PubMed] [Google Scholar]
  17. Hescheler J., Rosenthal W., Hinsch K. D., Wulfern M., Trautwein W., Schultz G. Angiotensin II-induced stimulation of voltage-dependent Ca2+ currents in an adrenal cortical cell line. EMBO J. 1988 Mar;7(3):619–624. doi: 10.1002/j.1460-2075.1988.tb02855.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kojima I., Kojima K., Kreutter D., Rasmussen H. The temporal integration of the aldosterone secretory response to angiotensin occurs via two intracellular pathways. J Biol Chem. 1984 Dec 10;259(23):14448–14457. [PubMed] [Google Scholar]
  19. Kojima I., Kojima K., Rasmussen H. Characteristics of angiotensin II-, K+- and ACTH-induced calcium influx in adrenal glomerulosa cells. Evidence that angiotensin II, K+, and ACTH may open a common calcium channel. J Biol Chem. 1985 Aug 5;260(16):9171–9176. [PubMed] [Google Scholar]
  20. Kojima I., Kojima K., Rasmussen H. Role of calcium fluxes in the sustained phase of angiotensin II-mediated aldosterone secretion from adrenal glomerulosa cells. J Biol Chem. 1985 Aug 5;260(16):9177–9184. [PubMed] [Google Scholar]
  21. Kojima I., Shibata H., Ogata E. Pertussis toxin blocks angiotensin II-induced calcium influx but not inositol trisphosphate production in adrenal glomerulosa cell. FEBS Lett. 1986 Aug 18;204(2):347–351. doi: 10.1016/0014-5793(86)80841-9. [DOI] [PubMed] [Google Scholar]
  22. Kojima I., Shibata H., Ogata E. Time-dependent restoration of the trigger pool of calcium after termination of angiotensin II action in adrenal glomerulosa cells. J Biol Chem. 1987 Apr 5;262(10):4557–4563. [PubMed] [Google Scholar]
  23. Kojima K., Kojima I., Rasmussen H. Dihydropyridine calcium agonist and antagonist effects on aldosterone secretion. Am J Physiol. 1984 Nov;247(5 Pt 1):E645–E650. doi: 10.1152/ajpendo.1984.247.5.E645. [DOI] [PubMed] [Google Scholar]
  24. Lacerda A. E., Rampe D., Brown A. M. Effects of protein kinase C activators on cardiac Ca2+ channels. Nature. 1988 Sep 15;335(6187):249–251. doi: 10.1038/335249a0. [DOI] [PubMed] [Google Scholar]
  25. Quinn S. J., Cornwall M. C., Williams G. H. Electrophysiological responses to angiotensin II of isolated rat adrenal glomerulosa cells. Endocrinology. 1987 Apr;120(4):1581–1589. doi: 10.1210/endo-120-4-1581. [DOI] [PubMed] [Google Scholar]
  26. Rane S. G., Dunlap K. Kinase C activator 1,2-oleoylacetylglycerol attenuates voltage-dependent calcium current in sensory neurons. Proc Natl Acad Sci U S A. 1986 Jan;83(1):184–188. doi: 10.1073/pnas.83.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Spät A., Balla I., Balla T., Cragoe E. J., Jr, Hajnóczky G., Hunyady L. Angiotensin II and potassium activate different calcium entry mechanisms in rat adrenal glomerulosa cells. J Endocrinol. 1989 Jul;122(1):361–370. doi: 10.1677/joe.0.1220361. [DOI] [PubMed] [Google Scholar]
  28. Stojilković S. S., Rojas E., Stutzin A., Izumi S., Catt K. J. Desensitization of pituitary gonadotropin secretion by agonist-induced inactivation of voltage-sensitive calcium channels. J Biol Chem. 1989 Jul 5;264(19):10939–10942. [PubMed] [Google Scholar]
  29. Williams B. C., McDougall J. G., Tait J. F., Tait S. A. Calcium efflux and steroid output from superfused rat adrenal cells: effects of potassium, adrenocorticotropic hormone, 5-hydroxytryptamine, adenosine 3':5'-cyclic monophosphate and angiotensins II and III. Clin Sci (Lond) 1981 Nov;61(5):541–551. doi: 10.1042/cs0610541. [DOI] [PubMed] [Google Scholar]
  30. Williams C. L., Lennon V. A. Activation of M3 muscarinic acetylcholine receptors inhibits voltage-dependent calcium influx in small cell lung carcinoma. J Biol Chem. 1990 Jan 25;265(3):1443–1447. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES