Abstract
Na(+)-dependent nucleoside transport was examined in bovine renal brush-border membrane vesicles. Two separate Na+/nucleoside cotransporters were shown to be present: (1) a system specific for purine nucleosides and uridine, designated as the N1 carrier, and (2) an Na(+)-dependent nucleoside transporter that accepts pyrimidine nucleosides, adenosine and analogues of adenosine, designated as the N2 system. Both systems exhibit a high affinity for nucleosides (apparent Km values approximately 10 microM), are insensitive to inhibition by facilitated-diffusion nucleoside transport inhibitors, are rheogenic and exhibit a high specificity for Na+. Na+ increases the affinity of the influx of guanosine and thymidine, nucleosides that serve as model permeants for the N1 and N2 nucleoside transporters respectively. The Na+/nucleoside coupling stoichiometry is consistent with 1:1 for both carriers.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Biber J., Stieger B., Haase W., Murer H. A high yield preparation for rat kidney brush border membranes. Different behaviour of lysosomal markers. Biochim Biophys Acta. 1981 Oct 2;647(2):169–176. doi: 10.1016/0005-2736(81)90243-1. [DOI] [PubMed] [Google Scholar]
- Darnowski J. W., Holdridge C., Handschumacher R. E. Concentrative uridine transport by murine splenocytes: kinetics, substrate specificity, and sodium dependency. Cancer Res. 1987 May 15;47(10):2614–2619. [PubMed] [Google Scholar]
- Jakobs E. S., Paterson A. R. Sodium-dependent, concentrative nucleoside transport in cultured intestinal epithelial cells. Biochem Biophys Res Commun. 1986 Nov 14;140(3):1028–1035. doi: 10.1016/0006-291x(86)90738-2. [DOI] [PubMed] [Google Scholar]
- Jarvis S. M. Characterization of sodium-dependent nucleoside transport in rabbit intestinal brush-border membrane vesicles. Biochim Biophys Acta. 1989 Feb 13;979(1):132–138. doi: 10.1016/0005-2736(89)90533-6. [DOI] [PubMed] [Google Scholar]
- Kuttesch J. F., Jr, Nelson J. A. Renal handling of 2'-deoxyadenosine and adenosine in humans and mice. Cancer Chemother Pharmacol. 1982;8(2):221–229. doi: 10.1007/BF00255488. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Le Hir M., Dubach U. C. Concentrative transport of purine nucleosides in brush border vesicles of the rat kidney. Eur J Clin Invest. 1985 Jun;15(3):121–127. doi: 10.1111/j.1365-2362.1985.tb00154.x. [DOI] [PubMed] [Google Scholar]
- Le Hir M., Dubach U. C. Sodium gradient-energized concentrative transport of adenosine in renal brush border vesicles. Pflugers Arch. 1984 May;401(1):58–63. doi: 10.1007/BF00581533. [DOI] [PubMed] [Google Scholar]
- Le Hir M., Dubach U. C. Uphill transport of pyrimidine nucleosides in renal brush border vesicles. Pflugers Arch. 1985 Jul;404(3):238–243. doi: 10.1007/BF00581245. [DOI] [PubMed] [Google Scholar]
- Le Hir M. Evidence for separate carriers for purine nucleosides and for pyrimidine nucleosides in the renal brush border membrane. Ren Physiol Biochem. 1990 May-Jun;13(3):154–161. doi: 10.1159/000173361. [DOI] [PubMed] [Google Scholar]
- Lee C. W., Cheeseman C. I., Jarvis S. M. Na+- and K+-dependent uridine transport in rat renal brush-border membrane vesicles. Biochim Biophys Acta. 1988 Jul 7;942(1):139–149. doi: 10.1016/0005-2736(88)90283-0. [DOI] [PubMed] [Google Scholar]
- Lee C. W., Cheeseman C. I., Jarvis S. M. Transport characteristics of renal brush border Na(+)- and K(+)-dependent uridine carriers. Am J Physiol. 1990 May;258(5 Pt 2):F1203–F1210. doi: 10.1152/ajprenal.1990.258.5.F1203. [DOI] [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Murer H., Hopfer U. Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes. Proc Natl Acad Sci U S A. 1974 Feb;71(2):484–488. doi: 10.1073/pnas.71.2.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peerce B. E., Wright E. M. Sodium-induced conformational changes in the glucose transporter of intestinal brush borders. J Biol Chem. 1984 Nov 25;259(22):14105–14112. [PubMed] [Google Scholar]
- Plagemann P. G., Woffendin C. Na+-dependent and -independent transport of uridine and its phosphorylation in mouse spleen cells. Biochim Biophys Acta. 1989 Jun 6;981(2):315–325. doi: 10.1016/0005-2736(89)90043-6. [DOI] [PubMed] [Google Scholar]
- Plagemann P. G., Wohlhueter R. M., Woffendin C. Nucleoside and nucleobase transport in animal cells. Biochim Biophys Acta. 1988 Oct 11;947(3):405–443. doi: 10.1016/0304-4157(88)90002-0. [DOI] [PubMed] [Google Scholar]
- Schwenk M., Hegazy E., Lopez del Pino V. Uridine uptake by isolated intestinal epithelial cells of guinea pig. Biochim Biophys Acta. 1984 Dec 11;805(4):370–374. doi: 10.1016/0167-4889(84)90020-x. [DOI] [PubMed] [Google Scholar]
- Turner R. J., Moran A. Further studies of proximal tubular brush border membrane D-glucose transport heterogeneity. J Membr Biol. 1982;70(1):37–45. doi: 10.1007/BF01871587. [DOI] [PubMed] [Google Scholar]
- Vijayalakshmi D., Belt J. A. Sodium-dependent nucleoside transport in mouse intestinal epithelial cells. Two transport systems with differing substrate specificities. J Biol Chem. 1988 Dec 25;263(36):19419–19423. [PubMed] [Google Scholar]
- Williams T. C., Doherty A. J., Griffith D. A., Jarvis S. M. Characterization of sodium-dependent and sodium-independent nucleoside transport systems in rabbit brush-border and basolateral plasma-membrane vesicles from the renal outer cortex. Biochem J. 1989 Nov 15;264(1):223–231. doi: 10.1042/bj2640223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams T. C., Jarvis S. M. Na(+)-dependent purine and pyrimidine nucleoside transporters in bovine outer renal cortex brush-border-membrane vesicles. Biochem Soc Trans. 1990 Aug;18(4):684–685. doi: 10.1042/bst0180684. [DOI] [PubMed] [Google Scholar]