Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Feb 15;274(Pt 1):91–95. doi: 10.1042/bj2740091

Gly429 is the major determinant of uncompetitive inhibition of human germ cell alkaline phosphatase by L-leucine.

C Hummer 1, J L Millán 1
PMCID: PMC1149924  PMID: 2001256

Abstract

The catalytic activity of human placental alkaline phosphatase (PLAP) and germ cell alkaline phosphatase (GCAP) can be inhibited, through an uncompetitive mechanism, by L-Phe. GCAP is also selectively inhibited by L-Leu. Site-directed mutagenesis of five of the 12 residues which are different in PLAP and GCAP revealed that Gly429 is the primary determinant of GCAP inhibition by L-Leu, and Ser84 and Leu297 play a modulatory role in the inhibition.

Full text

PDF
91

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bird P., Gething M. J., Sambrook J. Translocation in yeast and mammalian cells: not all signal sequences are functionally equivalent. J Cell Biol. 1987 Dec;105(6 Pt 2):2905–2914. doi: 10.1083/jcb.105.6.2905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Byers D. A., Fernley H. N., Walker P. G. Studies on alkaline phosphatase. Inhibition of human-placental phosphoryl phosphatase by L-phenylalanine. Eur J Biochem. 1972 Sep 18;29(2):197–204. doi: 10.1111/j.1432-1033.1972.tb01975.x. [DOI] [PubMed] [Google Scholar]
  3. Doellgast G. J., Fishman W. H. L-leucine, a specific inhibitor of a rare human placental alkaline phosphatase phenotype. Nature. 1976 Jan 1;259(5538):49–51. doi: 10.1038/259049a0. [DOI] [PubMed] [Google Scholar]
  4. FISHMAN W. H., GREEN S., INGLIS N. I. L-phenylalanine: an organ specific, stereospecific inhibitor of human intestinal alkaline phosphatase. Nature. 1963 May 18;198:685–686. doi: 10.1038/198685b0. [DOI] [PubMed] [Google Scholar]
  5. Fishman W. H. Perspectives on alkaline phosphatase isoenzymes. Am J Med. 1974 May;56(5):617–650. doi: 10.1016/0002-9343(74)90631-7. [DOI] [PubMed] [Google Scholar]
  6. Fishman W. H., Sie H. G. Organ-specific inhibition of human alkaline phosphatase isoenzymes of liver, bone, intestine and placenta; L-phenylalanine, L-tryptophan and L homoarginine. Enzymologia. 1971 Sep 30;41(3):141–167. [PubMed] [Google Scholar]
  7. Ghosh N. K., Fishman W. H. On the mechanism of inhibition of intestinal alkaline phosphatase by L-phenylalanine. I. Kinetic studies. J Biol Chem. 1966 Jun 10;241(11):2516–2522. [PubMed] [Google Scholar]
  8. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Green S., Anstiss C. L., Fishman W. H. Automated differential isoenzyme analysis. II. The fractionation of serum alkaline phosphatases into "liver", "intestinal" and "other" components. Enzymologia. 1971 Jul 31;41(1):9–26. [PubMed] [Google Scholar]
  10. Hahnel A. C., Schultz G. A. Cloning and characterization of a cDNA encoding alkaline phosphatase in mouse embryonal carcinoma cells. Clin Chim Acta. 1990 Jan 15;186(2):171–174. doi: 10.1016/0009-8981(90)90034-p. [DOI] [PubMed] [Google Scholar]
  11. Haije W. G., van Driel J., van der Burg M. E. Catalytic and immunologic activities of placental-like alkaline phosphatase in clinical studies. The value of PLAP in follow-up of ovarian cancer. Clin Chim Acta. 1987 Jun 15;165(2-3):165–175. doi: 10.1016/0009-8981(87)90160-4. [DOI] [PubMed] [Google Scholar]
  12. Harris H. The human alkaline phosphatases: what we know and what we don't know. Clin Chim Acta. 1990 Jan 15;186(2):133–150. doi: 10.1016/0009-8981(90)90031-m. [DOI] [PubMed] [Google Scholar]
  13. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lin C. W., Fishman W. H. L-Homoarginine. An organ-specific, uncompetitive inhibitor of human liver and bone alkaline phosphohydrolases. J Biol Chem. 1972 May 25;247(10):3082–3087. [PubMed] [Google Scholar]
  15. Micanovic R., Bailey C. A., Brink L., Gerber L., Pan Y. C., Hulmes J. D., Udenfriend S. Aspartic acid-484 of nascent placental alkaline phosphatase condenses with a phosphatidylinositol glycan to become the carboxyl terminus of the mature enzyme. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1398–1402. doi: 10.1073/pnas.85.5.1398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Millán J. L., Eriksson A., Stigbrand T. A possible new locus of alkaline phosphatase expressed in human testis. Hum Genet. 1982;62(4):293–295. doi: 10.1007/BF00304541. [DOI] [PubMed] [Google Scholar]
  17. Millán J. L., Manes T. Seminoma-derived Nagao isozyme is encoded by a germ-cell alkaline phosphatase gene. Proc Natl Acad Sci U S A. 1988 May;85(9):3024–3028. doi: 10.1073/pnas.85.9.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Millán J. L. Molecular cloning and sequence analysis of human placental alkaline phosphatase. J Biol Chem. 1986 Mar 5;261(7):3112–3115. [PubMed] [Google Scholar]
  19. Millán J. L., Nustad K., Nørgaard-Pedersen B. Highly sensitive solid-phase immunoenzymometric assay for placental and placental-like alkaline phosphatases with a monoclonal antibody and monodisperse polymer particles. Clin Chem. 1985 Jan;31(1):54–59. [PubMed] [Google Scholar]
  20. Millán J. L. Oncodevelopmental alkaline phosphatases: in search for a function. Prog Clin Biol Res. 1990;344:453–475. [PubMed] [Google Scholar]
  21. Millán J. L. Oncodevelopmental expression and structure of alkaline phosphatase genes. Anticancer Res. 1988 Sep-Oct;8(5A):995–1004. [PubMed] [Google Scholar]
  22. Millán J. L., Stigbrand T. Antigenic determinants of human placental and testicular placental-like alkaline phosphatases as mapped by monoclonal antibodies. Eur J Biochem. 1983 Oct 17;136(1):1–7. doi: 10.1111/j.1432-1033.1983.tb07697.x. [DOI] [PubMed] [Google Scholar]
  23. Millán J. L., Whyte M. P., Avioli L. V., Fishman W. H. Hypophosphatasia (adult form): quantitation of serum alkaline phosphatase isoenzyme activity in a large kindred. Clin Chem. 1980 Jun;26(7):840–845. [PubMed] [Google Scholar]
  24. Mulivor R. A., Plotkin L. I., Harris H. Differential inhibition of the products of the human alkaline phosphatase loci. Ann Hum Genet. 1978 Jul;42(1):1–13. doi: 10.1111/j.1469-1809.1978.tb00927.x. [DOI] [PubMed] [Google Scholar]
  25. Narisawa S., Sowadski J. M., Millán J. L. An active site mutant of human placental alkaline phosphatase with deficient enzymatic activity and preserved immunoreactivity. Clin Chim Acta. 1990 Jan 15;186(2):189–196. doi: 10.1016/0009-8981(90)90036-r. [DOI] [PubMed] [Google Scholar]
  26. Sowadski J. M., Handschumacher M. D., Murthy H. M., Foster B. A., Wyckoff H. W. Refined structure of alkaline phosphatase from Escherichia coli at 2.8 A resolution. J Mol Biol. 1985 Nov 20;186(2):417–433. doi: 10.1016/0022-2836(85)90115-9. [DOI] [PubMed] [Google Scholar]
  27. Van Belle H., De Broe M. E., Wieme R. J. L-p-Bromotetramisole, a new reagent for use in measuring placental or intestinal isoenzymes of alkaline phosphatase in human serum. Clin Chem. 1977 Mar;23(3):454–459. [PubMed] [Google Scholar]
  28. Watanabe S., Watanabe T., Li W. B., Soong B. W., Chou J. Y. Expression of the germ cell alkaline phosphatase gene in human choriocarcinoma cells. J Biol Chem. 1989 Jul 25;264(21):12611–12619. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES