Abstract
The phospholipid and fatty acid compositions of the host infected erythrocyte plasma membrane (IEPM) have been determined for erythrocytes infected with the human malaria parasite Plasmodium falciparum. IEPM were prepared by selective lysis of the host erythrocyte (but not of the parasite membranes) with 0.1% saponin, followed by differential centrifugation. The purity of the IEPM was determined by measuring the membrane-specific enzyme markers acetylcholinesterase, glutamate dehydrogenase and lactate dehydrogenase, and by immunoelectron microscopy using monoclonal antibodies specific for human erythrocyte glycophorin A (4E7) and for a 195 kDa parasite membrane glycoprotein (Pf6 3B10.1). Both approaches demonstrated that the host erythrocyte plasma membrane preparation was free from contamination by parasite membranes. During intra-erythrocytic development of the parasite, the phospholipid composition of the erythrocyte membrane was strikingly altered. IEPM contained more phosphatidylcholine (38.7% versus 31.7%) and phosphatidylinositol (2.1% versus 0.8%) and less sphingomyelin (14.6% versus 28.0%) than normal uninfected erythrocytes. Similar alterations in phospholipid composition were determined for erythrocyte membranes of parasitized cells isolated by an alternative method utilizing polycationic polyacrylamide microbeads (Affigel 731). The total fatty acid compositions of the major phospholipids in IEPM were determined by g.l.c. The percentage of polyunsaturated fatty acids in normal erythrocyte phospholipids (39.4%) was much higher than in phospholipids from purified parasites (23.3%) or IEPM (24.0%). The unsaturation index of phospholipids in IEPM was considerably lower than in uninfected erythrocytes (107.5 versus 161.0) and was very similar to that in purified parasites (107.5 versus 98.5). Large increases in palmitic acid (C16:0) (from 21.88% to 31.21%) and in oleic acid (C18:1) (from 14.64% to 24.60%), and major decreases in arachidonic acid (C20:4) (from 17.36% to 7.85%) and in docosahexaenoic acid (C22:6) (from 4.34% to 1.8%) occurred as a result of infection. The fatty acid profiles of individual phospholipid classes from IEPM resembled in many instances the fatty acid profiles of parasite phospholipids rather than those of uninfected erythrocytes. Analysis of IEPM from P. falciparum-infected erythrocytes (trophozoite stage) revealed that, during intra-erythrocytic maturation of the parasite, the host erythrocyte phospholipid composition was markedly refashioned. These alterations were not dependent on the method used to isolate the IEPM, with similar results obtained using either a saponin-lysis method or binding to Affigel beads. Since mature erythrocytes have negligible lipid synthesis and metabolism, these alterations must occur as a result of parasite-directed metabolism of erythrocyte lipids and/or trafficking of lipids between the parasite and erythrocyte membranes.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aley S. B., Sherwood J. A., Howard R. J. Knob-positive and knob-negative Plasmodium falciparum differ in expression of a strain-specific malarial antigen on the surface of infected erythrocytes. J Exp Med. 1984 Nov 1;160(5):1585–1590. doi: 10.1084/jem.160.5.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aley S. B., Sherwood J. A., Marsh K., Eidelman O., Howard R. J. Identification of isolate-specific proteins on sorbitol-enriched Plasmodium falciparum infected erythrocytes from Gambian patients. Parasitology. 1986 Jun;92(Pt 3):511–525. doi: 10.1017/s0031182000065410. [DOI] [PubMed] [Google Scholar]
- Allred D. R., Sterling C. R., Morse P. D., 2nd Increased fluidity of Plasmodium berghei-infected mouse red blood cell membranes detected by electron spin resonance spectroscopy. Mol Biochem Parasitol. 1983 Jan;7(1):27–39. doi: 10.1016/0166-6851(83)90114-7. [DOI] [PubMed] [Google Scholar]
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- Beaumelle B. D., Vial H. J. Modification of the fatty acid composition of individual phospholipids and neutral lipids after infection of the simian erythrocyte by Plasmodium knowlesi. Biochim Biophys Acta. 1986 Jun 27;877(2):262–270. doi: 10.1016/0005-2760(86)90303-6. [DOI] [PubMed] [Google Scholar]
- Beaumelle B. D., Vial H. J., Philippot J. R. Reevaluation, using marker enzymes, of the ability of saponin and ammonium chloride to free Plasmodium from infected erythrocytes. J Parasitol. 1987 Aug;73(4):743–748. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
- Ellingson J. S. Changes in the phospholipid composition in the differentiating cellular slime mold, Dictyostelium discoideum. Biochim Biophys Acta. 1974 Jan 23;337(1):60–67. doi: 10.1016/0005-2760(74)90040-x. [DOI] [PubMed] [Google Scholar]
- Ginsburg H., Krugliak M., Eidelman O., Cabantchik Z. I. New permeability pathways induced in membranes of Plasmodium falciparum infected erythrocytes. Mol Biochem Parasitol. 1983 Jun;8(2):177–190. doi: 10.1016/0166-6851(83)90008-7. [DOI] [PubMed] [Google Scholar]
- Ginsburg H., Kutner S., Krugliak M., Cabantchik Z. I. Characterization of permeation pathways appearing in the host membrane of Plasmodium falciparum infected red blood cells. Mol Biochem Parasitol. 1985 Mar;14(3):313–322. doi: 10.1016/0166-6851(85)90059-3. [DOI] [PubMed] [Google Scholar]
- Ginsburg H., Kutner S., Zangwil M., Cabantchik Z. I. Selectivity properties of pores induced in host erythrocyte membrane by Plasmodium falciparum. Effect of parasite maturation. Biochim Biophys Acta. 1986 Sep 25;861(1):194–196. doi: 10.1016/0005-2736(86)90579-1. [DOI] [PubMed] [Google Scholar]
- Gruenberg J., Sherman I. W. Isolation and characterization of the plasma membrane of human erythrocytes infected with the malarial parasite Plasmodium falciparum. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1087–1091. doi: 10.1073/pnas.80.4.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haldar K., de Amorim A. F., Cross G. A. Transport of fluorescent phospholipid analogues from the erythrocyte membrane to the parasite in Plasmodium falciparum-infected cells. J Cell Biol. 1989 Jun;108(6):2183–2192. doi: 10.1083/jcb.108.6.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hempelmann E., Dluzewski A. R. Effect of physostigmine on Plasmodium falciparum in culture. Tropenmed Parasitol. 1981 Mar;32(1):48–50. [PubMed] [Google Scholar]
- Holz G. G., Jr Lipids and the malarial parasite. Bull World Health Organ. 1977;55(2-3):237–248. [PMC free article] [PubMed] [Google Scholar]
- Howard R. J., Lyon J. A., Uni S., Saul A. J., Aley S. B., Klotz F., Panton L. J., Sherwood J. A., Marsh K., Aikawa M. Transport of an Mr approximately 300,000 Plasmodium falciparum protein (Pf EMP 2) from the intraerythrocytic asexual parasite to the cytoplasmic face of the host cell membrane. J Cell Biol. 1987 May;104(5):1269–1280. doi: 10.1083/jcb.104.5.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard R. J., Sawyer W. H. Changes in the membrane microviscosity of mouse red blood cells infected with Plasmodium berghei detected using n-(9-anthroyloxy) fatty acid fluorescent probes. Parasitology. 1980 Apr;80(2):331–342. doi: 10.1017/s0031182000000792. [DOI] [PubMed] [Google Scholar]
- Howard R. J., Uni S., Aikawa M., Aley S. B., Leech J. H., Lew A. M., Wellems T. E., Rener J., Taylor D. W. Secretion of a malarial histidine-rich protein (Pf HRP II) from Plasmodium falciparum-infected erythrocytes. J Cell Biol. 1986 Oct;103(4):1269–1277. doi: 10.1083/jcb.103.4.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson B. S., Branton D. Plasma membrane: rapid isolation and exposure of the cytoplasmic surface by use of positively charged beads. Science. 1977 Jan 21;195(4275):302–304. doi: 10.1126/science.831278. [DOI] [PubMed] [Google Scholar]
- Jacobson B. S. Imporved method for isolation of plasma membrane on cationic beads. Membranes from Dictyostelium discoideum. Biochim Biophys Acta. 1980 Aug 14;600(3):769–780. doi: 10.1016/0005-2736(80)90479-4. [DOI] [PubMed] [Google Scholar]
- Joshi P., Dutta G. P., Gupta C. M. An intracellular simian malarial parasite (Plasmodium knowlesi) induces stage-dependent alterations in membrane phospholipid organization of its host erythrocyte. Biochem J. 1987 Aug 15;246(1):103–108. doi: 10.1042/bj2460103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kutner S., Baruch D., Ginsburg H., Cabantchik Z. I. Alterations in membrane permeability of malaria-infected human erythrocytes are related to the growth stage of the parasite. Biochim Biophys Acta. 1982 Apr 23;687(1):113–117. doi: 10.1016/0005-2736(82)90178-x. [DOI] [PubMed] [Google Scholar]
- Kutner S., Ginsburg H., Cabantchik Z. I. Permselectivity changes in malaria (Plasmodium falciparum) infected human red blood cell membranes. J Cell Physiol. 1983 Feb;114(2):245–251. doi: 10.1002/jcp.1041140215. [DOI] [PubMed] [Google Scholar]
- Leech J. H., Barnwell J. W., Miller L. H., Howard R. J. Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. J Exp Med. 1984 Jun 1;159(6):1567–1575. doi: 10.1084/jem.159.6.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyon J. A., Haynes J. D., Diggs C. L., Chulay J. D., Haidaris C. G., Pratt-Rossiter J. Monoclonal antibody characterization of the 195-kilodalton major surface glycoprotein of Plasmodium falciparum malaria schizonts and merozoites: identification of additional processed products and a serotype-restricted repetitive epitope. J Immunol. 1987 Feb 1;138(3):895–901. [PubMed] [Google Scholar]
- Maguire P. A., Sherman I. W. Phospholipid composition, cholesterol content and cholesterol exchange in Plasmodium falciparum-infected red cells. Mol Biochem Parasitol. 1990 Jan 1;38(1):105–112. doi: 10.1016/0166-6851(90)90210-d. [DOI] [PubMed] [Google Scholar]
- Makler M. T. P. falciparum invasion of human red cells and cytoadherence to endothelial cells is dependent upon a parasite produced glycosidase. Biochem Biophys Res Commun. 1987 Mar 13;143(2):461–466. doi: 10.1016/0006-291x(87)91376-3. [DOI] [PubMed] [Google Scholar]
- Mitchell C. D., Mitchell W. B., Hanahan D. J. Enzyme and hemoglobin retention in human erythrocyte stroma. Biochim Biophys Acta. 1965 Jul 8;104(2):348–358. doi: 10.1016/0304-4165(65)90340-5. [DOI] [PubMed] [Google Scholar]
- Moll G. N., Vial H. J., Ancelin M. L., Op den Kamp J. A., Roelofsen B., van Deenen L. L. Phospholipid uptake by Plasmodium knowlesi infected erythrocytes. FEBS Lett. 1988 May 23;232(2):341–346. doi: 10.1016/0014-5793(88)80765-8. [DOI] [PubMed] [Google Scholar]
- REED C. F., SWISHER S. N., MARINETTI G. V., ENEN E. G. Studies of the lipids of the erythrocyte. I. Quantitative analysis of the lipids of normal human red blood cells. J Lab Clin Med. 1960 Aug;56:281–289. [PubMed] [Google Scholar]
- Rouser G., Fkeischer S., Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970 May;5(5):494–496. doi: 10.1007/BF02531316. [DOI] [PubMed] [Google Scholar]
- Schwartz R. S., Olson J. A., Raventos-Suarez C., Yee M., Heath R. H., Lubin B., Nagel R. L. Altered plasma membrane phospholipid organization in Plasmodium falciparum-infected human erythrocytes. Blood. 1987 Feb;69(2):401–407. [PubMed] [Google Scholar]
- Sherman I. W. Biochemistry of Plasmodium (malarial parasites). Microbiol Rev. 1979 Dec;43(4):453–495. doi: 10.1128/mr.43.4.453-495.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherman I. W., Greenan J. R. Altered red cell membrane fluidity during schizogonic development of malarial parasites (Plasmodium falciparum and P. lophurae). Trans R Soc Trop Med Hyg. 1984;78(5):641–644. doi: 10.1016/0035-9203(84)90227-x. [DOI] [PubMed] [Google Scholar]
- Taraschi T. F., Parashar A., Hooks M., Rubin H. Perturbation of red cell membrane structure during intracellular maturation of Plasmodium falciparum. Science. 1986 Apr 4;232(4746):102–104. doi: 10.1126/science.3006251. [DOI] [PubMed] [Google Scholar]
- Tokuyasu K. T. A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol. 1973 May;57(2):551–565. doi: 10.1083/jcb.57.2.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trager W., Jensen J. B. Human malaria parasites in continuous culture. Science. 1976 Aug 20;193(4254):673–675. doi: 10.1126/science.781840. [DOI] [PubMed] [Google Scholar]
- Van der Schaft P. H., Beaumelle B., Vial H., Roelofsen B., Op den Kamp J. A., Van Deenen L. L. Phospholipid organization in monkey erythrocytes upon Plasmodium knowlesi infection. Biochim Biophys Acta. 1987 Jul 10;901(1):1–14. doi: 10.1016/0005-2736(87)90250-1. [DOI] [PubMed] [Google Scholar]
- Vander Jagt D. L., Intress C., Heidrich J. E., Mrema J. E., Rieckmann K. H., Heidrich H. G. Marker enzymes of Plasmodium falciparum and human erythrocytes as indicators of parasite purity. J Parasitol. 1982 Dec;68(6):1068–1071. [PubMed] [Google Scholar]
- Vial H. J., Philippot J. R., Wallach D. F. A reevaluation of the status of cholesterol in erythrocytes infected by Plasmodium knowlesi and P. falciparum. Mol Biochem Parasitol. 1984 Sep;13(1):53–65. doi: 10.1016/0166-6851(84)90101-4. [DOI] [PubMed] [Google Scholar]
- Vial H. J., Thuet M. J., Broussal J. L., Philippot J. R. Phospholipid biosynthesis by Plasmodium knowlesi-infected erythrocytes: the incorporation of phospohlipid precursors and the identification of previously undetected metabolic pathways. J Parasitol. 1982 Jun;68(3):379–391. [PubMed] [Google Scholar]
- Vial H. J., Thuet M. J., Philippot J. R. Cholinephosphotransferase and ethanolaminephosphotransferase activities in Plasmodium knowlesi-infected erythrocytes. Their use as parasite-specific markers. Biochim Biophys Acta. 1984 Sep 12;795(2):372–383. doi: 10.1016/0005-2760(84)90088-2. [DOI] [PubMed] [Google Scholar]

