Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Feb 15;274(Pt 1):167–171. doi: 10.1042/bj2740167

Role of unsaturated derivatives of spermidine as substrates for spermine synthase and in supporting growth of SV-3T3 cells.

A E Pegg 1, S Nagarajan 1, S Naficy 1, B Ganem 1
PMCID: PMC1149934  PMID: 2001229

Abstract

Synthetic unsaturated analogues of the natural polyamine were examined as possible substrates for spermine synthase and as replacements for spermidine in supporting the growth of SV-3T3 cells. It was found that N-(3-aminopropyl)-1,4-diamino-cis-but-2-ene [the cis isomer of the alkene analogue of spermidine] was a good substrate for spermine synthase, but that the trans isomer [N-(3-aminopropyl)-1,4-diamino-trans-but-2-ene] and the alkene analogue [N-(3-aminopropyl)-1,4-diaminobut-2-yne] were not substrates. These results provide the first demonstration of stereospecificity in the spermine synthase reaction. All three of the unsaturated spermidine analogues described above and the cis-alkene analogue of spermine [N1N4-bis-(3-aminopropyl)-1,4-diamino-cis-but-2-ene] were able to support the growth of SV-3T3 cells that were prevented from the endogenous synthesis of spermidine by treatment with alpha-difluoromethylornithine. Since N-(3-aminopropyl)-1,4-diamino-trans-but-2-ene] and N-(3-aminopropyl)-1,4-diaminobut-2-yne were not converted into a spermine derivative, it is apparent that this conversion is not needed for the stimulation of growth. However, since N1N4-bis-(3-aminopropyl)-1,4-diamino-cis-but-2-ene was also able to support growth and was not degraded to the spermidine derivative, it appears that either polyamine can be effective in this respect. All of the unsaturated analogues tested accumulated in the SV-3T3 cells to a much greater extent than spermidine itself. This indicates that these compounds are substrates for the polyamine transport system, but that they are less effective than the natural polyamines in the feedback regulation of this system.

Full text

PDF
167

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alhonen-Hongisto L., Seppänen P., Jänne J. Intracellular putrescine and spermidine deprivation induces increased uptake of the natural polyamines and methylglyoxal bis(guanylhydrazone). Biochem J. 1980 Dec 15;192(3):941–945. doi: 10.1042/bj1920941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baillon J. G., Kolb M., Mamont P. S. Inhibition of mammalian spermine synthase by N-alkylated-1,3-diaminopropane derivatives in vitro and in cultured rat hepatoma cells. Eur J Biochem. 1989 Jan 15;179(1):17–21. doi: 10.1111/j.1432-1033.1989.tb14515.x. [DOI] [PubMed] [Google Scholar]
  3. Baillon J. G., Mamont P. S., Wagner J., Gerhart F., Lux P. Fluorinated analogues of spermidine as substrates of spermine synthase. Eur J Biochem. 1988 Sep 15;176(2):237–242. doi: 10.1111/j.1432-1033.1988.tb14274.x. [DOI] [PubMed] [Google Scholar]
  4. Basu H. S., Feuerstein B. G., Deen D. F., Lubich W. P., Bergeron R. J., Samejima K., Marton L. J. Correlation between the effects of polyamine analogues on DNA conformation and cell growth. Cancer Res. 1989 Oct 15;49(20):5591–5597. [PubMed] [Google Scholar]
  5. Bergeron R. J., Hawthorne T. R., Vinson J. R., Beck D. E., Jr, Ingeno M. J. Role of the methylene backbone in the antiproliferative activity of polyamine analogues on L1210 cells. Cancer Res. 1989 Jun 1;49(11):2959–2964. [PubMed] [Google Scholar]
  6. Byers T. L., Pegg A. E. Regulation of polyamine transport in Chinese hamster ovary cells. J Cell Physiol. 1990 Jun;143(3):460–467. doi: 10.1002/jcp.1041430309. [DOI] [PubMed] [Google Scholar]
  7. Casero R. A., Jr, Ervin S. J., Celano P., Baylin S. B., Bergeron R. J. Differential response to treatment with the bis(ethyl)polyamine analogues between human small cell lung carcinoma and undifferentiated large cell lung carcinoma in culture. Cancer Res. 1989 Feb 1;49(3):639–643. [PubMed] [Google Scholar]
  8. Dezeure F., Sarhan S., Seiler N. Chain-fluorinated polyamines as tumor markers--IV. Comparison of 2-fluoroputrescine and 2,2-difluoroputrescine as substrates of spermidine synthase in vitro and in vivo. Int J Biochem. 1988;20(11):1299–1312. doi: 10.1016/0020-711x(88)90235-2. [DOI] [PubMed] [Google Scholar]
  9. Feuerstein B. G., Pattabiraman N., Marton L. J. Molecular dynamics of spermine-DNA interactions: sequence specificity and DNA bending for a simple ligand. Nucleic Acids Res. 1989 Sep 12;17(17):6883–6892. doi: 10.1093/nar/17.17.6883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feuerstein B. G., Pattabiraman N., Marton L. J. Molecular mechanics of the interactions of spermine with DNA: DNA bending as a result of ligand binding. Nucleic Acids Res. 1990 Mar 11;18(5):1271–1282. doi: 10.1093/nar/18.5.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gerner E. W., Mamont P. S. Restoration of the polyamine contents in rat hepatoma tissue-culture cells after inhibition of polyamine biosynthesis. Relationship with cell proliferation. Eur J Biochem. 1986 Apr 1;156(1):31–35. doi: 10.1111/j.1432-1033.1986.tb09544.x. [DOI] [PubMed] [Google Scholar]
  12. Hibasami H., Pegg A. E. Rapid and convenient method for the assay of aminopropyltransferases. Biochem J. 1978 Mar 1;169(3):709–712. doi: 10.1042/bj1690709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McGovern K. A., Clark R. S., Pegg A. E. Effect of 1,3,6-triaminohexane and 1,4,7-triaminoheptane on growth and polyamine metabolism in SV-3T3 cells treated with 2-difluoromethylornithine. J Cell Physiol. 1986 May;127(2):311–316. doi: 10.1002/jcp.1041270219. [DOI] [PubMed] [Google Scholar]
  14. Morgan D. M. Polyamines. Essays Biochem. 1987;23:82–115. [PubMed] [Google Scholar]
  15. Nagarajan S., Ganem B., Pegg A. E. Studies of non-metabolizable polyamines that support growth of SV-3T3 cells depleted of natural polyamines by exposure to alpha-difluoromethylornithine. Biochem J. 1988 Sep 1;254(2):373–378. doi: 10.1042/bj2540373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pajula R. L. Kinetic properties of spermine synthase from bovine brain. Biochem J. 1983 Dec 1;215(3):669–676. doi: 10.1042/bj2150669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pegg A. E., Coward J. K., Talekar R. R., Secrist J. A., 3rd Effects of certain 5'-substituted adenosines on polyamine synthesis: selective inhibitors of spermine synthase. Biochemistry. 1986 Jul 15;25(14):4091–4097. doi: 10.1021/bi00362a016. [DOI] [PubMed] [Google Scholar]
  18. Pegg A. E., McCann P. P. Polyamine metabolism and function. Am J Physiol. 1982 Nov;243(5):C212–C221. doi: 10.1152/ajpcell.1982.243.5.C212. [DOI] [PubMed] [Google Scholar]
  19. Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
  20. Pegg A. E. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J. 1986 Mar 1;234(2):249–262. doi: 10.1042/bj2340249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pegg A. E., Shuttleworth K., Hibasami H. Specificity of mammalian spermidine synthase and spermine synthase. Biochem J. 1981 Aug 1;197(2):315–320. doi: 10.1042/bj1970315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pegg A. E. The role of polyamine depletion and accumulation of decarboxylated S-adenosylmethionine in the inhibition of growth of SV-3T3 cells treated with alpha-difluoromethylornithine. Biochem J. 1984 Nov 15;224(1):29–38. doi: 10.1042/bj2240029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pegg A. E., Wechter R., Poulin R., Woster P. M., Coward J. K. Effect of S-adenosyl-1,12-diamino-3-thio-9-azadodecane, a multisubstrate adduct inhibitor of spermine synthase, on polyamine metabolism in mammalian cells. Biochemistry. 1989 Oct 17;28(21):8446–8453. doi: 10.1021/bi00447a026. [DOI] [PubMed] [Google Scholar]
  24. Porter C. W., Bergeron R. J., Stolowich N. J. Biological properties of N4-spermidine derivatives and their potential in anticancer chemotherapy. Cancer Res. 1982 Oct;42(10):4072–4078. [PubMed] [Google Scholar]
  25. Porter C. W., Cavanaugh P. F., Jr, Stolowich N., Ganis B., Kelly E., Bergeron R. J. Biological properties of N4- and N1,N8-spermidine derivatives in cultured L1210 leukemia cells. Cancer Res. 1985 May;45(5):2050–2057. [PubMed] [Google Scholar]
  26. Porter C. W., McManis J., Casero R. A., Bergeron R. J. Relative abilities of bis(ethyl) derivatives of putrescine, spermidine, and spermine to regulate polyamine biosynthesis and inhibit L1210 leukemia cell growth. Cancer Res. 1987 Jun 1;47(11):2821–2825. [PubMed] [Google Scholar]
  27. Porter C. W., McManis J., Lee D., Bergeron R. J. Selective regulation of S-adenosylmethionine decarboxylase activity by the spermine analogue 6-spermyne. Biochem J. 1988 Sep 1;254(2):337–342. doi: 10.1042/bj2540337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Porter C. W., Stanek J., Black J., Vaughan M., Ganis B., Pleshkewych A. Morphological evidence for an apparent lysosomotropic activity by unsaturated putrescine analogues. Cancer Res. 1990 Mar 15;50(6):1929–1935. [PubMed] [Google Scholar]
  29. Porter C. W., Sufrin J. R. Interference with polyamine biosynthesis and/or function by analogs of polyamines or methionine as a potential anticancer chemotherapeutic strategy. Anticancer Res. 1986 Jul-Aug;6(4):525–542. [PubMed] [Google Scholar]
  30. Raina A., Pajula R. L., Eloranta T. Purification of spermidine aminopropyltransferase (spermine synthase) from bovine brain. Methods Enzymol. 1983;94:276–279. doi: 10.1016/s0076-6879(83)94048-x. [DOI] [PubMed] [Google Scholar]
  31. Samejima K., Nakazawa Y. Action of decarboxylated S-adenosylmethionine analogs in the spermidine-synthesizing system from rat prostate. Arch Biochem Biophys. 1980 Apr 15;201(1):241–246. doi: 10.1016/0003-9861(80)90508-1. [DOI] [PubMed] [Google Scholar]
  32. Sarhan S., Dezeure F., Seiler N. Putrescine derivatives as substrates of spermidine synthase. Int J Biochem. 1987;19(11):1037–1047. doi: 10.1016/0020-711x(87)90304-1. [DOI] [PubMed] [Google Scholar]
  33. Sarhan S., Knodgen B., Gerhart F., Seiler N. Chain-fluorinated polyamines as tumor markers--I. In vivo transformation of 2,2-difluoroputrescine into 6,6-difluorospermidine and 6,6-difluorospermine. Int J Biochem. 1987;19(9):843–852. doi: 10.1016/0020-711x(87)90244-8. [DOI] [PubMed] [Google Scholar]
  34. Seiler N., Dezeure F. Polyamine transport in mammalian cells. Int J Biochem. 1990;22(3):211–218. doi: 10.1016/0020-711x(90)90332-w. [DOI] [PubMed] [Google Scholar]
  35. Seppänen P., Alhonen-Hongisto L., Jänne J. Death of tumor cells in response to the use of a system of stimulated polyamine uptake from the transport of methylglyoxal bis(guanylhydrazone). Eur J Biochem. 1981 Sep 1;118(3):571–576. doi: 10.1111/j.1432-1033.1981.tb05557.x. [DOI] [PubMed] [Google Scholar]
  36. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  37. Woster P. M., Black A. Y., Duff K. J., Coward J. K., Pegg A. E. Synthesis and biological evaluation of S-adenosyl-1,12-diamino-3-thio-9-azadodecane, a multisubstrate adduct inhibitor of spermine synthase. J Med Chem. 1989 Jun;32(6):1300–1307. doi: 10.1021/jm00126a026. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES