Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Feb 15;274(Pt 1):207–217. doi: 10.1042/bj2740207

Electron-transfer steps involved in the reactivity of Hansenula anomala flavocytochrome b2 as deduced from deuterium isotope effects and simulation studies.

C Capeillère-Blandin 1
PMCID: PMC1149940  PMID: 2001234

Abstract

The L-lactate-flavocytochrome b2-ferricyanide electron-transfer system from the yeast Hansenula anomala was investigated by rapid-reaction techniques. The kinetics of reduction of oxidized flavocytochrome b2 by L-lactate and L-[2H]lactate were biphasic both for flavin and haem prosthetic groups and at all concentrations tested. The first-order rate constants of the rapid and slow phases depended upon substrate concentrations, a saturation behaviour being exhibited. Substitution of the C alpha-H atom by 2H was found to cause appreciable changes in the rate constants for the initial reduction of flavin and haem (phase I), which were respectively about 3-fold and 2-fold less than with L-lactate. In contrast, no significant isotope effect was noted on the apparent reduction rate constants of the slow phase, phase II. Under steady-state conditions an isotope effect of 2.0 was found on the overall electron transfer from L-lactate to ferricyanide. These transient reduction results were discussed in terms of a kinetic model implying intra- and inter-protomer electron exchanges between flavin and haem b2, all of which have been experimentally described. Computer simulations indicate that the reaction scheme provides a reasonable explanation of the fast-reduction phase, phase I (in absence of acceptor). The pseudo-first-order rate constant for oxidation of reduced haem b2 in flavocytochrome b2 increased with increasing ferricyanide concentration in a hyperbolic fashion. The limiting value at infinite ferricyanide concentration, which was attributed to the intramolecular electron-transfer rate from ferroflavocytochrome b2 to the iron of ferricyanide within a complex, was 920 +/- 50 s-1 at pH 7.0 and 5 degrees C. Stopped-flow and rapid-freezing measurements showed haem b2 and flavin to be 90 and 44% oxidized respectively under steady-state conditions in presence of ferricyanide. Simulation studies were carried out to check the participation of the proposed reduction sequence in the overall catalytic reaction together with the role of reduced haem b2 (Hr) and flavin semiquinone (Fsq) as electron donors to ferricyanide. When the rate of the intramolecular electron-transfer exchange between Fsq and ferricyanide was adjusted to 200 s-1, simulated data accounted for molar activities defined under various conditions of L-lactate, [2H]lactate and ferricyanide concentrations. Simulation studies were extended to data obtained using cytochrome c as acceptor and reaction catalysed by Saccharomyces cerevisiae flavocytochrome b2. The differences in reactivity observed for Hr and Fsq with ferricyanide and cytochrome c were discussed in terms of redox potentials, electrostatic interactions, distances and accessibility of the participating groups.

Full text

PDF
207

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRAY R. C. Sudden freezing as a technique for the study of rapid reactions. Biochem J. 1961 Oct;81:189–193. doi: 10.1042/bj0810189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Black M. T., Gunn F. J., Chapman S. K., Reid G. A. Structural basis for the kinetic differences between flavocytochromes b2 from the yeasts Hansenula anomala and Saccharomyces cerevisiae. Biochem J. 1989 Nov 1;263(3):973–976. doi: 10.1042/bj2630973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Capeillere-Blandin C., Pucheault J., Ferradini C. The reduction of flavocytochrome b2 by carboxylate radicals. A pulse radiolysis study. Biochim Biophys Acta. 1984 Apr 27;786(1-2):67–78. doi: 10.1016/0167-4838(84)90155-9. [DOI] [PubMed] [Google Scholar]
  4. Capeillere-Blandin C. Transient kinetics of the one-electron transfer reaction between reduced flavocytochrome b2 and oxidized cytochrome c. Evidence for the existence of a protein complex in the reaction. Eur J Biochem. 1982 Nov 15;128(2-3):533–542. doi: 10.1111/j.1432-1033.1982.tb06998.x. [DOI] [PubMed] [Google Scholar]
  5. Capeillère-Blandin C., Albani J. Cytochrome b2, an electron carrier between flavocytochrome b2 and cytochrome c. Rapid kinetic characterization of the electron-transfer parameters with ionic-strength-dependence. Biochem J. 1987 Jul 1;245(1):159–165. doi: 10.1042/bj2450159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Capeillère-Blandin C., Barber M. J., Bray R. C. Comparison of the processes involved in reduction by the substrate for two homologous flavocytochromes b2 from different species of yeast. Biochem J. 1986 Sep 15;238(3):745–756. doi: 10.1042/bj2380745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Capeillère-Blandin C., Bray R. C., Iwatsubo M., Labeyrie F. Flavocytochrome b2: kinetic studies by absorbance and electron-paramagnetic-resonance spectroscopy of electron distribution among prosthetic groups. Eur J Biochem. 1975 Jun;54(2):549–566. doi: 10.1111/j.1432-1033.1975.tb04168.x. [DOI] [PubMed] [Google Scholar]
  8. Capeillère-Blandin C. Flavocytochrome b2: simulation studies of the electron-transfer reactions among the prosthetic groups. Eur J Biochem. 1975 Aug 1;56(1):91–101. doi: 10.1111/j.1432-1033.1975.tb02210.x. [DOI] [PubMed] [Google Scholar]
  9. Celerier J., Risler Y., Schwencke J., Janot J. M., Gervais M. Isolation of the flavodehydrogenase domain of Hansenula anomala flavocytochrome b2 after mild proteolysis by an H. anomala proteinase. Eur J Biochem. 1989 Jun 1;182(1):67–75. doi: 10.1111/j.1432-1033.1989.tb14801.x. [DOI] [PubMed] [Google Scholar]
  10. Gervais M., Groudinsky O., Risler Y., Labeyrie F. Dissection of flavocytochrome b2-a bifunctional enzyme-into a cytochrome core and a flavoprotein molecule. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1543–1551. doi: 10.1016/s0006-291x(77)80153-8. [DOI] [PubMed] [Google Scholar]
  11. Gervais M., Labeyrie F., Risler Y., Vergnes O. A flavin-mononucleotide-binding site in Hansenula anomala nicked flavocytochrome b2, requiring the association of two domains. Eur J Biochem. 1980 Oct;111(1):17–31. doi: 10.1111/j.1432-1033.1980.tb06071.x. [DOI] [PubMed] [Google Scholar]
  12. HINKSON J. W., MAHLER H. R. Studies on the mechanism of enzyme-catalyzed oxidation-reduction reactions. VI. Kinetic studies with yeast L-lactate dehydrogenase. Biochemistry. 1963 Mar-Apr;2:209–216. doi: 10.1021/bi00902a001. [DOI] [PubMed] [Google Scholar]
  13. Hiromi K., Sturtevant J. M. Investigations of yeast L-lactate dyhydrogenase (cytochrome b2). II. Anaerobic spectrophotometric and electron spin resonance titrations. J Biol Chem. 1965 Dec;240(12):4662–4668. [PubMed] [Google Scholar]
  14. Iwatsubo M., Mével-Ninio M., Labeyrie F. Rapid kinetic studies of partial reactions in the heme free derivative of L-lactate cytochrome c oxidoreductase (flavocytochrome b2); the flavodehydrogenase function. Biochemistry. 1977 Aug 9;16(16):3558–3566. doi: 10.1021/bi00635a009. [DOI] [PubMed] [Google Scholar]
  15. Janot J. M., Capeillère-Blandin C., Labeyrie F. L-Lactate cytochrome c reductase: rapid kinetic studies of electron transfers within the flavocytochrome b2-cytochrome c assembly. Biochim Biophys Acta. 1990 Apr 5;1016(2):165–176. doi: 10.1016/0005-2728(90)90055-9. [DOI] [PubMed] [Google Scholar]
  16. Klinman J. P. Kinetic isotope effects in enzymology. Adv Enzymol Relat Areas Mol Biol. 1978;46:415–494. doi: 10.1002/9780470122914.ch7. [DOI] [PubMed] [Google Scholar]
  17. Labeyrie F., Baudras A., Lederer F. Flavocytochrome b 2 or L-lactate cytochrome c reductase from yeast. Methods Enzymol. 1978;53:238–256. doi: 10.1016/s0076-6879(78)53030-9. [DOI] [PubMed] [Google Scholar]
  18. Lederer F. On the first steps of lactate oxidation by bakers' yeast L-(plus)-lactate dehydrogenase (cytochrome b2). Eur J Biochem. 1974 Jul 15;46(2):393–399. doi: 10.1111/j.1432-1033.1974.tb03632.x. [DOI] [PubMed] [Google Scholar]
  19. MORTON R. K., STURTEVANT J. M. KINETIC INVESTIGATIONS OF YEAST L-LACTATE DEHYDROGENASE (CYTOCHROME B2). I. THE DEHYDROGENATION OF L-LACTATE IN THE PRESENCE AND ABSENCE OF FERRICYANIDE AS ELECTRON ACCEPTOR. J Biol Chem. 1964 May;239:1614–1624. [PubMed] [Google Scholar]
  20. Mayo S. L., Ellis W. R., Jr, Crutchley R. J., Gray H. B. Long-range electron transfer in heme proteins. Science. 1986 Aug 29;233(4767):948–952. doi: 10.1126/science.3016897. [DOI] [PubMed] [Google Scholar]
  21. Pajot P., Groudinsky O. Molecular weight and quaternary structure of yeast L-lactate dehydrogenase (cytochrome b2). 2. Revised heme extinction coefficients and minimal molecular weight. Eur J Biochem. 1970 Jan;12(1):158–164. doi: 10.1111/j.1432-1033.1970.tb00833.x. [DOI] [PubMed] [Google Scholar]
  22. Pompon D. Flavocytochrome b2 from baker's yeast. Computer-simulation studies of a new scheme for intramolecular electron transfer. Eur J Biochem. 1980 May;106(1):151–159. [PubMed] [Google Scholar]
  23. Pompon D., Iwatsubo M., Lederer F. Flavocytochrome b2 (Baker's yeast). Deuterium isotope effect studied by rapid-kinetic methods as a probe for the mechanism of electron transfer. Eur J Biochem. 1980 Mar;104(2):479–488. doi: 10.1111/j.1432-1033.1980.tb04450.x. [DOI] [PubMed] [Google Scholar]
  24. Risler Y., Tegoni M., Gervais M. Nucleotide sequence of the Hansenula anomala gene encoding flavocytochrome b2 (L-lactate:cytochrome c oxidoreductase). Nucleic Acids Res. 1989 Oct 25;17(20):8381–8381. doi: 10.1093/nar/17.20.8381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Suzuki H., Ogura Y. The kinetic behavior of the FMN and protoheme moieties of yeast L(plus)-lactate dehydrogenase (cytochrome b2). J Biochem. 1970 Feb;67(2):277–289. doi: 10.1093/oxfordjournals.jbchem.a129251. [DOI] [PubMed] [Google Scholar]
  26. Tegoni M., Janot J. M., Labeyrie F. Inhibition of L-lactate: cytochrome-c reductase (flavocytochrome b2) by product binding to the semiquinone transient. Loss of reactivity towards monoelectronic acceptors. Eur J Biochem. 1990 Jun 20;190(2):329–342. doi: 10.1111/j.1432-1033.1990.tb15580.x. [DOI] [PubMed] [Google Scholar]
  27. Tegoni M., Janot J. M., Labeyrie F. Regulation of dehydrogenases/one-electron transferases by modification of flavin redox potentials. Effect of product binding on semiquinone stabilization in yeast flavocytochrome b2. Eur J Biochem. 1986 Mar 17;155(3):491–503. doi: 10.1111/j.1432-1033.1986.tb09516.x. [DOI] [PubMed] [Google Scholar]
  28. Tegoni M., Silvestrini M. C., Labeyrie F., Brunori M. A temperature-jump study of the electron transfer reactions in Hansenula anomala flavocytochrome b2. Eur J Biochem. 1984 Apr 2;140(1):39–45. doi: 10.1111/j.1432-1033.1984.tb08064.x. [DOI] [PubMed] [Google Scholar]
  29. Thomas M. A., Capellere-Blandin C., Pucheault J., Ferradini C. Pulse radiolysis study of a yeast cytochrome c from Hansenula anomala. Biochimie. 1986 May;68(5):745–755. doi: 10.1016/s0300-9084(86)80169-9. [DOI] [PubMed] [Google Scholar]
  30. Thomas M. A., Gervais M., Favaudon V., Valat P. Study of the Hansenula anomala yeast flavocytochrome-b2-cytochrome-c complex 2. Localization of the main association area. Eur J Biochem. 1983 Oct 3;135(3):577–581. doi: 10.1111/j.1432-1033.1983.tb07691.x. [DOI] [PubMed] [Google Scholar]
  31. Tollin G., Meyer T. E., Cusanovich M. A. Elucidation of the factors which determine reaction-rate constants and biological specificity for electron-transfer proteins. Biochim Biophys Acta. 1986 Nov 4;853(1):29–41. doi: 10.1016/0304-4173(86)90003-0. [DOI] [PubMed] [Google Scholar]
  32. Xia Z. X., Mathews F. S. Molecular structure of flavocytochrome b2 at 2.4 A resolution. J Mol Biol. 1990 Apr 20;212(4):837–863. doi: 10.1016/0022-2836(90)90240-M. [DOI] [PubMed] [Google Scholar]
  33. Xia Z. X., Shamala N., Bethge P. H., Lim L. W., Bellamy H. D., Xuong N. H., Lederer F., Mathews F. S. Three-dimensional structure of flavocytochrome b2 from baker's yeast at 3.0-A resolution. Proc Natl Acad Sci U S A. 1987 May;84(9):2629–2633. doi: 10.1073/pnas.84.9.2629. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES