Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Mar 15;274(Pt 3):807–812. doi: 10.1042/bj2740807

A comparative study of the kinetics and stereochemistry of the serine hydroxymethyltransferase- and tryptophan synthase-catalysed exchange of the pro-2R and pro-2S protons of glycine.

J P Malthouse 1, J J Milne 1, L S Gariani 1
PMCID: PMC1149982  PMID: 1849406

Abstract

The stereospecificity of the serine hydroxymethyltransferase (EC 2.1.2.1)- and tryptophan synthase (EC 4.2.1.20)- catalysed exchange of the pro-2R and pro-2S alpha-protons of glycine was investigated by using 13C n.m.r. The exchange process is described in terms of a minimal four-step mechanism, and a method for analysing the exchange process by complete progress curves is presented. It is shown that serine hydroxymethyltransferase does not have absolute stereospecificity for the pro-2S-proton of glycine, but it catalyses the exchange of this proton 7400 times faster than the pro-2R proton of glycine. Tryptophan synthase is shown preferentially to catalyse the exchange of the pro-2R proton of glycine at a rate 380 times faster than the pro-2S proton of glycine. The exchange rates for the rapidly exchanged alpha-protons of glycine are similar for both enzymes. However, the exchange rates of the slowly exchanged alpha-protons differ by an order of magnitude. The structural features that may be responsible for the differences in the stereospecificity of the two enzymes are discussed.

Full text

PDF
807

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akhtar M., El-Obeid H. A., Jordan P. M. Mechanistic, inhibitory and stereochemical studies on cytoplasmic and mitochondrial serine transhydorxymethylases. Biochem J. 1975 Feb;145(2):159–168. doi: 10.1042/bj1450159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bailey C. J., Malthouse J. P. A proton-magnetic-resonance study of hydrogen-exchange reactions of yeast tryptophan synthase. Biochem J. 1991 Feb 1;273(Pt 3):605–610. doi: 10.1042/bj2730605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bailey C. J., Turner P. D. Purification and properties of tryptophan synthase from baker's yeast (Saccharomyces cerevisiae). Biochem J. 1983 Jan 1;209(1):151–157. doi: 10.1042/bj2090151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
  5. Dunathan H. C. Conformation and reaction specificity in pyridoxal phosphate enzymes. Proc Natl Acad Sci U S A. 1966 Apr;55(4):712–716. doi: 10.1073/pnas.55.4.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dunathan H. C. Stereochemical aspects of pyridoxal phosphate catalysis. Adv Enzymol Relat Areas Mol Biol. 1971;35:79–134. doi: 10.1002/9780470122808.ch3. [DOI] [PubMed] [Google Scholar]
  7. Dunathan H. C., Voet J. G. Stereochemical evidence for the evolution of pyridoxal-phosphate enzymes of various function from a common ancestor. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3888–3891. doi: 10.1073/pnas.71.10.3888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hansen J., Davis L. Serine hydroxymethylase. Specificity of bond cleaveage to form quinonoid intermediates and rate of holoenzyme formation. Biochim Biophys Acta. 1979 Jun 6;568(2):321–330. doi: 10.1016/0005-2744(79)90299-7. [DOI] [PubMed] [Google Scholar]
  9. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  10. Houben K. F., Kadima W., Roy M., Dunn M. F. L-serine analogues form Schiff base and quinonoidal intermediates with Escherichia coli tryptophan synthase. Biochemistry. 1989 May 16;28(10):4140–4147. doi: 10.1021/bi00436a003. [DOI] [PubMed] [Google Scholar]
  11. Hyde C. C., Ahmed S. A., Padlan E. A., Miles E. W., Davies D. R. Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium. J Biol Chem. 1988 Nov 25;263(33):17857–17871. [PubMed] [Google Scholar]
  12. Jones C. W., 3rd, Priest D. G. Serine transhydroxymethylase: mechanism of aldolase activation by folate. Arch Biochem Biophys. 1976 May;174(1):305–311. doi: 10.1016/0003-9861(76)90349-0. [DOI] [PubMed] [Google Scholar]
  13. Jordan P. M., Akhtar M. The mechanism of action of serine transhydroxymethylase. Biochem J. 1970 Jan;116(2):277–286. doi: 10.1042/bj1160277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. MALKIN L. I., GREENBERG D. M. PURIFICATION AND PROPERTIES OF THREONINE OR ALLOTHREONINE ALDOLASE FROM RAT LIVER. Biochim Biophys Acta. 1964 Apr 6;85:117–131. doi: 10.1016/0926-6569(64)90172-5. [DOI] [PubMed] [Google Scholar]
  17. Miles E. W., Bauerle R., Ahmed S. A. Tryptophan synthase from Escherichia coli and Salmonella typhimurium. Methods Enzymol. 1987;142:398–414. doi: 10.1016/s0076-6879(87)42051-x. [DOI] [PubMed] [Google Scholar]
  18. Miles E. W., Kawasaki H., Ahmed S. A., Morita H., Morita H., Nagata S. The beta subunit of tryptophan synthase. Clarification of the roles of histidine 86, lysine 87, arginine 148, cysteine 170, and cysteine 230. J Biol Chem. 1989 Apr 15;264(11):6280–6287. [PubMed] [Google Scholar]
  19. Miles E. W. Tryptophan synthase: structure, function, and subunit interaction. Adv Enzymol Relat Areas Mol Biol. 1979;49:127–186. doi: 10.1002/9780470122945.ch4. [DOI] [PubMed] [Google Scholar]
  20. Roy M., Keblawi S., Dunn M. F. Stereoelectronic control of bond formation in Escherichia coli tryptophan synthase: substrate specificity and enzymatic synthesis of the novel amino acid dihydroisotryptophan. Biochemistry. 1988 Sep 6;27(18):6698–6704. doi: 10.1021/bi00418a009. [DOI] [PubMed] [Google Scholar]
  21. Schirch L., Ropp M. Serine transhydroxymethylase. Affinity of tetrahydrofolate compounds for the enzyme and enzyme-glycine complex. Biochemistry. 1967 Jan;6(1):253–257. doi: 10.1021/bi00853a039. [DOI] [PubMed] [Google Scholar]
  22. Schirch L. Serine hydroxymethyltransferase. Adv Enzymol Relat Areas Mol Biol. 1982;53:83–112. doi: 10.1002/9780470122983.ch3. [DOI] [PubMed] [Google Scholar]
  23. Shostak K., Schirch V. Serine hydroxymethyltransferase: mechanism of the racemization and transamination of D- and L-alanine. Biochemistry. 1988 Oct 18;27(21):8007–8014. doi: 10.1021/bi00421a006. [DOI] [PubMed] [Google Scholar]
  24. Tsai H., Suskind S. R. Enzymic properties of a mutant tryptophan synthase from Neurospora crassa. Biochim Biophys Acta. 1972 Sep 19;284(1):324–340. doi: 10.1016/0005-2744(72)90070-8. [DOI] [PubMed] [Google Scholar]
  25. Tsai M. D., Schleicher E., Potts R., Skye G. E., Floss H. G. Stereochemistry and mechanism of reactions catalyzed by tryptophan synthetase and its beta2 subunit. J Biol Chem. 1978 Aug 10;253(15):5344–5349. [PubMed] [Google Scholar]
  26. Turner P. D., Loughrey H. C., Bailey C. J. Hydrogen exchange kinetics and the mechanism of reaction B of yeast tryptophan synthase. Biochim Biophys Acta. 1985 Dec 20;832(3):280–287. doi: 10.1016/0167-4838(85)90261-4. [DOI] [PubMed] [Google Scholar]
  27. Ulevitch R. J., Kallen R. G. Studies of the reactions of lamb liver serine hydroxymethylase with L-phenylalanine: kinetic isotope effects upon quinonoid intermediate formation. Biochemistry. 1977 Nov 29;16(24):5350–5354. doi: 10.1021/bi00643a028. [DOI] [PubMed] [Google Scholar]
  28. Voet J. G., Hindenlang D. M., Blanck T. J., Ulevitch R. J., Kallen R. G., Dunathan H. C. The stereochemistry of pyridoxal phosphate enzymes. The absolute stereochemistry of cofactor C' 4 protonation in the transamination of holoserine hydroxymethylase by D-alanine. J Biol Chem. 1973 Feb 10;248(3):841–842. [PubMed] [Google Scholar]
  29. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES