Abstract
Glutathione metabolism was studied in isolated hepatocytes from foetal, newborn and adult rats. The GSH/GSSG ratio decreased 15-20-fold through the foetal-neonatal-adult transition. This was mainly due to an increase in GSSG. All enzyme activities involved in the glutathione redox cycle tend to increase during that transition, but the relative increases in glutathione peroxidase and glutathione S-transferase were 3-5 times those of glutathione reductase or glucose-6-phosphate dehydrogenase. GSH synthesis from methionine as a sulphur source was 6 times lower in foetal than in adult hepatocytes. However, when N-acetylcysteine was used as a sulphur donor to by-pass the cystathionine pathway, the rates of GSH synthesis were similar in foetal and adult cells. This is due to the fact that cystathionase activity in foetal cells is very low. This low activity is reflected in the blood amino acid pattern, where the concentration of cysteine rises from 8 to 52 microM from foetuses to adult rats. This supports the idea that cysteine may be an essential amino acid for the premature animal.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akerboom T. P., Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol. 1981;77:373–382. doi: 10.1016/s0076-6879(81)77050-2. [DOI] [PubMed] [Google Scholar]
- Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuezva J. M., Moreno F. J., Medina J. M., Mayor F. Prematurity in the rat. I. Fuels and gluconeogenic enzymes. Biol Neonate. 1980;37(1-2):88–95. doi: 10.1159/000241260. [DOI] [PubMed] [Google Scholar]
- Estrela J. M., Gil F., Vila J. M., Viña J. Alpha-adrenergic modulation of glutathione metabolism in isolated rat hepatocytes. Am J Physiol. 1988 Dec;255(6 Pt 1):E801–E805. doi: 10.1152/ajpendo.1988.255.6.E801. [DOI] [PubMed] [Google Scholar]
- Finkelstein J. D., Mudd S. H. Trans-sulfuration in mammals. The methionine-sparing effect of cystine. J Biol Chem. 1967 Mar 10;242(5):873–880. [PubMed] [Google Scholar]
- Flohé L., Günzler W. A. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114–121. doi: 10.1016/s0076-6879(84)05015-1. [DOI] [PubMed] [Google Scholar]
- Gaitonde M. K. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J. 1967 Aug;104(2):627–633. doi: 10.1042/bj1040627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaull G., Sturman J. A., Räihä N. C. Development of mammalian sulfur metabolism: absence of cystathionase in human fetal tissues. Pediatr Res. 1972 Jun;6(6):538–547. doi: 10.1203/00006450-197206000-00002. [DOI] [PubMed] [Google Scholar]
- Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
- Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
- Reed D. J., Orrenius S. The role of methionine in glutathione biosynthesis by isolated hepatocytes. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1257–1264. doi: 10.1016/s0006-291x(77)80115-0. [DOI] [PubMed] [Google Scholar]
- Roncero C., Estrela J. M., Benito M. Adenine nucleotide compartmentation in foetal rat hepatocytes. Effects of atractyloside, oligomycin, calcium ionophore and adrenergic agonists. FEBS Lett. 1986 Nov 10;208(1):105–108. doi: 10.1016/0014-5793(86)81541-1. [DOI] [PubMed] [Google Scholar]
- Saez G., Thornalley P. J., Hill H. A., Hems R., Bannister J. V. The production of free radicals during the autoxidation of cysteine and their effect on isolated rat hepatocytes. Biochim Biophys Acta. 1982 Oct 28;719(1):24–31. doi: 10.1016/0304-4165(82)90302-6. [DOI] [PubMed] [Google Scholar]
- Stramentinoli G., Pezzoli C., Galli-Kienle M. Protective role of S-adenosyl-l-methionine against acetaminophen induced mortality and hepatotoxicity in mice. Biochem Pharmacol. 1979 Dec 15;28(24):3567–3571. doi: 10.1016/0006-2952(79)90401-5. [DOI] [PubMed] [Google Scholar]
- Sturman J. A., Gaull G., Raiha N. C. Absence of cystathionase in human fetal liver: is cystine essential? Science. 1970 Jul 3;169(3940):74–76. doi: 10.1126/science.169.3940.74. [DOI] [PubMed] [Google Scholar]
- Sáez G. T., Romero F. J., Viña J. Effects of glutathione depletion on gluconeogenesis in isolated hepatocytes. Arch Biochem Biophys. 1985 Aug 15;241(1):75–80. doi: 10.1016/0003-9861(85)90363-7. [DOI] [PubMed] [Google Scholar]
- Tateishi N., Higashi T., Shinya S., Naruse A., Sakamoto Y. Studies on the regulation of glutathione level in rat liver. J Biochem. 1974 Jan;75(1):93–103. doi: 10.1093/oxfordjournals.jbchem.a130387. [DOI] [PubMed] [Google Scholar]
- Viña J., Hems R., Krebs H. A. Maintenance of glutathione content is isolated hepatocyctes. Biochem J. 1978 Mar 15;170(3):627–630. doi: 10.1042/bj1700627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Viña J., Puertes I. R., Estrela J. M., Viña J. R., Galbis J. L. Involvement of gamma-glutamyltransferase in amino-acid uptake by the lactating mammary gland of the rat. Biochem J. 1981 Jan 15;194(1):99–102. doi: 10.1042/bj1940099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Viña J., Saez G. T., Wiggins D., Roberts A. F., Hems R., Krebs H. A. The effect of cysteine oxidation on isolated hepatocytes. Biochem J. 1983 Apr 15;212(1):39–44. doi: 10.1042/bj2120039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zlotkin S. H., Anderson G. H. The development of cystathionase activity during the first year of life. Pediatr Res. 1982 Jan;16(1):65–68. doi: 10.1203/00006450-198201001-00013. [DOI] [PubMed] [Google Scholar]