Abstract
Guanylate cyclase in pig intestinal brush border membranes was stimulated by certain aromatic disulphides. The most effective were 6-thioguanine disulphide [(TGS)2], 6-mercaptopurine disulphide, 6,6'-dithiodinicotinic acid, 5,5'-dithiobis-(2-nitrobenzoic acid) and 5-carboxy-2-thiouracil disulphide. (TGS)2 stimulated activity 15-fold when present at 0.1 mM. The optimum concentration for each disulphide was different, and higher concentrations were inhibitory. There was no activation by alkyl disulphides or by N-ethylmaleimide. Activation by 50 microM-(TGS)2 was partially reversed by later addition of 0.1 mM-dithiothreitol, whereas activation by the Escherichia coli heat-stable enterotoxin STa was relatively unaffected. Pretreatment of the membranes with (TGS)2 produced a concentration-dependent inhibition of STa-stimulated activity, while stimulating basal activity, until the activities were equal at 50 microM. Activity was [Mg2+]-dependent, the optimal [Mg2+] progressively increasing as the enzyme was stimulated by (TGS)2, STa and Lubrol PX respectively. However, (TGS)2 pretreatment prevented the shift to higher [Mg2+]optima induced by STa or Lubrol alone. Substitution of Mn2+ for Mg2+ in the reaction elevated basal activity and eliminated by activation (TGS)2. (TGS)2 only inhibited Mn2(+)-dependent activity (both basal and stimulated). The affinity of 125I-STa for its receptor was slightly increased by (TGS)2. We propose that (TGS)2 undergoes thiol-disulphide exchange with at least three different protein thiols of decreasing reactivity. The first is associated with Mg2(+)-dependent activation, the second is associated with a tonic inhibition of activity and the third is associated with the catalytic activity, although probably not at the active site.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bruns R. F., Lawson-Wendling K., Pugsley T. A. A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Anal Biochem. 1983 Jul 1;132(1):74–81. doi: 10.1016/0003-2697(83)90427-x. [DOI] [PubMed] [Google Scholar]
- Chinkers M., Garbers D. L. The protein kinase domain of the ANP receptor is required for signaling. Science. 1989 Sep 22;245(4924):1392–1394. doi: 10.1126/science.2571188. [DOI] [PubMed] [Google Scholar]
- Cohen M. B., Thompson M. R., Overmann G. J., Giannella R. A. Association and dissociation of Escherichia coli heat-stable enterotoxin from rat brush border membrane receptors. Infect Immun. 1987 Feb;55(2):329–334. doi: 10.1128/iai.55.2.329-334.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dreyfus L. A., Jaso-Friedmann L., Robertson D. C. Characterization of the mechanism of action of Escherichia coli heat-stable enterotoxin. Infect Immun. 1984 May;44(2):493–501. doi: 10.1128/iai.44.2.493-501.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ElDeib M. M., Dove C. R., Parker C. D., Veum T. L., Zinn G. M., White A. A. Reversal of the biological activity of Escherichia coli heat-stable enterotoxin by disulfide-reducing agents. Infect Immun. 1986 Jan;51(1):24–30. doi: 10.1128/iai.51.1.24-30.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ElDeib M. M., Parker C. D., Veum T. L., Zinn G. M., White A. A. Characterization of intestinal brush border guanylate cyclase activation by Escherichia coli heat-stable enterotoxin. Arch Biochem Biophys. 1986 Feb 15;245(1):51–65. doi: 10.1016/0003-9861(86)90189-x. [DOI] [PubMed] [Google Scholar]
- Field M., Graf L. H., Jr, Laird W. J., Smith P. L. Heat-stable enterotoxin of Escherichia coli: in vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2800–2804. doi: 10.1073/pnas.75.6.2800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frantz J. C., Jaso-Friedman L., Robertson D. C. Binding of Escherichia coli heat-stable enterotoxin to rat intestinal cells and brush border membranes. Infect Immun. 1984 Feb;43(2):622–630. doi: 10.1128/iai.43.2.622-630.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerke V., Weber K. Isolation and characterization of mammalian villin and fimbrin, the two bundling proteins of the intestinal microvilli. Eur J Cell Biol. 1983 Sep;31(2):249–255. [PubMed] [Google Scholar]
- Gerzer R., Hofmann F., Schultz G. Purification of a soluble, sodium-nitroprusside-stimulated guanylate cyclase from bovine lung. Eur J Biochem. 1981 Jun 1;116(3):479–486. doi: 10.1111/j.1432-1033.1981.tb05361.x. [DOI] [PubMed] [Google Scholar]
- Giannella R. A., Luttrell M., Thompson M. Binding of Escherichia coli heat-stable enterotoxin to receptors on rat intestinal cells. Am J Physiol. 1983 Oct;245(4):G492–G498. doi: 10.1152/ajpgi.1983.245.4.G492. [DOI] [PubMed] [Google Scholar]
- Goldberg N. D., Haddox M. K. Cyclic GMP metabolism and involvement in biological regulation. Annu Rev Biochem. 1977;46:823–896. doi: 10.1146/annurev.bi.46.070177.004135. [DOI] [PubMed] [Google Scholar]
- Guarino A., Cohen M. B., Overmann G., Thompson M. R., Giannella R. A. Binding of E. coli heat-stable enterotoxin to rat intestinal brush borders and to basolateral membranes. Dig Dis Sci. 1987 Sep;32(9):1017–1026. doi: 10.1007/BF01297193. [DOI] [PubMed] [Google Scholar]
- Guerrant R. L., Hughes J. M., Chang B., Robertson D. C., Murad F. Activation of intestinal guanylate cyclase by heat-stable enterotoxin of Escherichia coli: studies of tissue specificity, potential receptors, and intermediates. J Infect Dis. 1980 Aug;142(2):220–228. doi: 10.1093/infdis/142.2.220. [DOI] [PubMed] [Google Scholar]
- Houk J., Singh R., Whitesides G. M. Measurement of thiol-disulfide interchange reactions and thiol pKa values. Methods Enzymol. 1987;143:129–140. doi: 10.1016/0076-6879(87)43023-1. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J., Kadowitz P. J., Baricos W. H. Evidence that regulation of hepatic guanylate cyclase activity involves interactions between catalytic site -SH groups and both substrate and activator. Arch Biochem Biophys. 1981 Apr 15;208(1):75–86. doi: 10.1016/0003-9861(81)90125-9. [DOI] [PubMed] [Google Scholar]
- Jocelyn P. C. Spectrophotometric assay of thiols. Methods Enzymol. 1987;143:44–67. doi: 10.1016/0076-6879(87)43013-9. [DOI] [PubMed] [Google Scholar]
- Kaushal V., Barnes L. D. Effect of zwitterionic buffers on measurement of small masses of protein with bicinchoninic acid. Anal Biochem. 1986 Sep;157(2):291–294. doi: 10.1016/0003-2697(86)90629-9. [DOI] [PubMed] [Google Scholar]
- Kuno T., Kamisaki Y., Waldman S. A., Gariepy J., Schoolnik G., Murad F. Characterization of the receptor for heat-stable enterotoxin from Escherichia coli in rat intestine. J Biol Chem. 1986 Jan 25;261(3):1470–1476. [PubMed] [Google Scholar]
- Macartney H. W., Tschesche H. Lantent collagenase from human polymorphonuclear leucocytes and activation to collagenase by removal of a inhibitor. FEBS Lett. 1980 Oct 6;119(2):327–332. doi: 10.1016/0014-5793(80)80282-1. [DOI] [PubMed] [Google Scholar]
- Rao M. C., Field M. Enterotoxins and ion transport. Biochem Soc Trans. 1984 Apr;12(2):177–180. doi: 10.1042/bst0120177. [DOI] [PubMed] [Google Scholar]
- Rao M. C., Guandalini S., Smith P. L., Field M. Mode of action of heat-stable Escherichia coli enterotoxin. Tissue and subcellular specificities and role of cyclic GMP. Biochim Biophys Acta. 1980 Sep 17;632(1):35–46. doi: 10.1016/0304-4165(80)90247-0. [DOI] [PubMed] [Google Scholar]
- Staples S. J., Asher S. E., Giannella R. A. Purification and characterization of heat-stable enterotoxin produced by a strain of E. coli pathogenic for man. J Biol Chem. 1980 May 25;255(10):4716–4721. [PubMed] [Google Scholar]
- Thompson M. R., Luttrell M., Overmann G., Giannella R. A. Biological and immunological characteristics of 125I-4Tyr and -18Tyr Escherichia coli heat-stable enterotoxin species purified by high-performance liquid chromatography. Anal Biochem. 1985 Jul;148(1):26–36. doi: 10.1016/0003-2697(85)90623-2. [DOI] [PubMed] [Google Scholar]
- Waldman S. A., Sinacore M. S., Lewicki J. A., Chang L. Y., Murad F. Selective activation of particulate guanylate cyclase by a specific class of porphyrins. J Biol Chem. 1984 Apr 10;259(7):4038–4042. [PubMed] [Google Scholar]
- White A. A. Guanylate cyclase activity in heart and lung. Adv Cyclic Nucleotide Res. 1975;5:353–373. [PubMed] [Google Scholar]
- White A. A., Karr D. B. Improved two-step method for the assay of adenylate and guanylate cyclase. Anal Biochem. 1978 Apr;85(2):451–460. doi: 10.1016/0003-2697(78)90242-7. [DOI] [PubMed] [Google Scholar]
- Ziegler D. M. Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation. Annu Rev Biochem. 1985;54:305–329. doi: 10.1146/annurev.bi.54.070185.001513. [DOI] [PubMed] [Google Scholar]
- de Jonge H. R. Properties of guanylate cyclase and levels of cyclic GMP in rat small intestinal villous and crypt cells. FEBS Lett. 1975 Jul 15;55(1):143–152. doi: 10.1016/0014-5793(75)80980-x. [DOI] [PubMed] [Google Scholar]
- de Jonge H. R. The mechanism of action of Escherichia coli heat-stable toxin. Biochem Soc Trans. 1984 Apr;12(2):180–184. doi: 10.1042/bst0120180. [DOI] [PubMed] [Google Scholar]
- elDeib M. M., Parker C. D., White A. A. Regulation of intestinal mucosa guanylate cyclase by hemin, heme and protoporphyrin IX. Biochim Biophys Acta. 1987 Apr 2;928(1):83–91. doi: 10.1016/0167-4889(87)90088-7. [DOI] [PubMed] [Google Scholar]
