Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Apr 1;275(Pt 1):273–276. doi: 10.1042/bj2750273

The lung lectin surfactant protein A aggregates phospholipid vesicles via a novel mechanism.

H P Haagsman 1, R H Elfring 1, B L van Buel 1, W F Voorhout 1
PMCID: PMC1150045  PMID: 2018482

Abstract

Surfactant protein A (SP-A), a lung-specific glycoprotein, consists of an N-terminal collagen-like domain and a C-terminal domain with a sequence similar to that of several Ca2(+)-dependent lectins. SP-A induces a rapid Ca2(+)-dependent aggregation of phospholipid vesicles. We report here that vesicle aggregation is mediated by Ca2(+)-induced interactions between carbohydrate-binding domains and oligosaccharide moieties of SP-A. This novel mechanism of membrane interactions may be relevant to the formation of the membrane lattice of tubular myelin, an extracellular form of surfactant.

Full text

PDF
273

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckmann H. J., Dierichs R. Extramembraneous particles and structural variations of tubular myelin figures in rat lung surfactant. J Ultrastruct Res. 1984 Jan;86(1):57–66. doi: 10.1016/s0022-5320(84)90095-9. [DOI] [PubMed] [Google Scholar]
  2. Bhattacharyya L., Khan M. I., Fant J., Brewer C. F. Formation of highly ordered cross-linked lattices between asparagine-linked oligosaccharides and lectins observed by electron microscopy. J Biol Chem. 1989 Jul 15;264(20):11543–11545. [PubMed] [Google Scholar]
  3. Bhattacharyya S. N., Lynn W. S., Dabrowski J., Trauner K., Hull W. E. Structure elucidation by one- and two-dimensional 360- and 500-MHz 1H NMR of the oligosaccharide units of two glycoproteins isolated from alveoli of patients with alveolar proteinosis. Arch Biochem Biophys. 1984 May 15;231(1):72–85. doi: 10.1016/0003-9861(84)90364-3. [DOI] [PubMed] [Google Scholar]
  4. Efrati H., Hawgood S., Williams M. C., Hong K., Benson B. J. Divalent cation and hydrogen ion effects on the structure and surface activity of pulmonary surfactant. Biochemistry. 1987 Dec 1;26(24):7986–7993. doi: 10.1021/bi00398a066. [DOI] [PubMed] [Google Scholar]
  5. Haagsman H. P., Hawgood S., Sargeant T., Buckley D., White R. T., Drickamer K., Benson B. J. The major lung surfactant protein, SP 28-36, is a calcium-dependent, carbohydrate-binding protein. J Biol Chem. 1987 Oct 15;262(29):13877–13880. [PubMed] [Google Scholar]
  6. Haagsman H. P., Sargeant T., Hauschka P. V., Benson B. J., Hawgood S. Binding of calcium to SP-A, a surfactant-associated protein. Biochemistry. 1990 Sep 25;29(38):8894–8900. doi: 10.1021/bi00490a003. [DOI] [PubMed] [Google Scholar]
  7. Haagsman H. P., White R. T., Schilling J., Lau K., Benson B. J., Golden J., Hawgood S., Clements J. A. Studies of the structure of lung surfactant protein SP-A. Am J Physiol. 1989 Dec;257(6 Pt 1):L421–L429. doi: 10.1152/ajplung.1989.257.6.L421. [DOI] [PubMed] [Google Scholar]
  8. Harwood J. L. Lung surfactant. Prog Lipid Res. 1987;26(3):211–256. doi: 10.1016/0163-7827(87)90004-x. [DOI] [PubMed] [Google Scholar]
  9. Hawgood S., Benson B. J., Hamilton R. L., Jr Effects of a surfactant-associated protein and calcium ions on the structure and surface activity of lung surfactant lipids. Biochemistry. 1985 Jan 1;24(1):184–190. doi: 10.1021/bi00322a026. [DOI] [PubMed] [Google Scholar]
  10. Hawgood S., Clements J. A. Pulmonary surfactant and its apoproteins. J Clin Invest. 1990 Jul;86(1):1–6. doi: 10.1172/JCI114670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. King R. J., Carmichael M. C., Horowitz P. M. Reassembly of lipid-protein complexes of pulmonary surfactant. Proposed mechanism of interaction. J Biol Chem. 1983 Sep 10;258(17):10672–10680. [PubMed] [Google Scholar]
  12. King R. J., Simon D., Horowitz P. M. Aspects of secondary and quaternary structure of surfactant protein A from canine lung. Biochim Biophys Acta. 1989 Feb 20;1001(3):294–301. doi: 10.1016/0005-2760(89)90114-8. [DOI] [PubMed] [Google Scholar]
  13. Kuchler S., Fressinaud C., Sarlieve L. L., Vincendon G., Zanetta J. P. Cerebellar soluble lectin is responsible for cell adhesion and participates in myelin compaction in cultured rat oligodendrocytes. Dev Neurosci. 1988;10(3):199–212. doi: 10.1159/000111970. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Munakata H., Nimberg R. B., Snider G. L., Robins A. G., Van Halbeek H., Vliegenthart J. F., Schmid K. The structure of the carbohydrate units of the 36K glycoprotein derived from the lung lavage of a patient with alveolar proteinosis by high resolution 1H-NMR spectroscopy. Biochem Biophys Res Commun. 1982 Oct 29;108(4):1401–1405. doi: 10.1016/s0006-291x(82)80062-4. [DOI] [PubMed] [Google Scholar]
  16. Sharon N., Lis H. Lectins as cell recognition molecules. Science. 1989 Oct 13;246(4927):227–234. doi: 10.1126/science.2552581. [DOI] [PubMed] [Google Scholar]
  17. Suzuki Y., Fujita Y., Kogishi K. Reconstitution of tubular myelin from synthetic lipids and proteins associated with pig pulmonary surfactant. Am Rev Respir Dis. 1989 Jul;140(1):75–81. doi: 10.1164/ajrccm/140.1.75. [DOI] [PubMed] [Google Scholar]
  18. Van Golde L. M., Batenburg J. J., Robertson B. The pulmonary surfactant system: biochemical aspects and functional significance. Physiol Rev. 1988 Apr;68(2):374–455. doi: 10.1152/physrev.1988.68.2.374. [DOI] [PubMed] [Google Scholar]
  19. Voss T., Eistetter H., Schäfer K. P., Engel J. Macromolecular organization of natural and recombinant lung surfactant protein SP 28-36. Structural homology with the complement factor C1q. J Mol Biol. 1988 May 5;201(1):219–227. doi: 10.1016/0022-2836(88)90448-2. [DOI] [PubMed] [Google Scholar]
  20. Walker S. R., Williams M. C., Benson B. Immunocytochemical localization of the major surfactant apoproteins in type II cells, Clara cells, and alveolar macrophages of rat lung. J Histochem Cytochem. 1986 Sep;34(9):1137–1148. doi: 10.1177/34.9.2426341. [DOI] [PubMed] [Google Scholar]
  21. Weaver T. E. Pulmonary surfactant-associated proteins. Gen Pharmacol. 1988;19(3):361–368. doi: 10.1016/0306-3623(88)90029-8. [DOI] [PubMed] [Google Scholar]
  22. Wright J. R., Clements J. A. Metabolism and turnover of lung surfactant. Am Rev Respir Dis. 1987 Aug;136(2):426–444. doi: 10.1164/ajrccm/136.2.426. [DOI] [PubMed] [Google Scholar]
  23. deMello D. E., Phelps D. S., Patel G., Floros J., Lagunoff D. Expression of the 35kDa and low molecular weight surfactant-associated proteins in the lungs of infants dying with respiratory distress syndrome. Am J Pathol. 1989 Jun;134(6):1285–1293. [PMC free article] [PubMed] [Google Scholar]
  24. van Iwaarden F., Welmers B., Verhoef J., Haagsman H. P., van Golde L. M. Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar macrophages. Am J Respir Cell Mol Biol. 1990 Jan;2(1):91–98. doi: 10.1165/ajrcmb/2.1.91. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES