Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 May 1;275(Pt 3):623–627. doi: 10.1042/bj2750623

Characterization and immunological properties of selenium-containing glutathione peroxidase induced by selenite in Chlamydomonas reinhardtii.

S Shigeoka 1, T Takeda 1, T Hanaoka 1
PMCID: PMC1150100  PMID: 2039442

Abstract

The selenite-induced glutathione peroxidase in Chlamydomonas reinhardtii has been purified about 323-fold with a 10% yield, as judged by PAGE. The native enzyme had an Mr of 67,000 and was composed of four identical subunits of Mr 17,000. Glutathione was the only electron donor, giving a specific activity of 193.6 mumol/min per mg of protein. L-Ascorbate, NADH, NADPH, pyrogallol, guaiacol and o-dianisidine did not donate electrons to the enzyme. In addition to H2O2, organic hydroperoxides were reduced by the enzyme. The Km values for glutathione and H2O2 were 3.7 mM and 0.24 mM respectively. The enzyme reaction proceeded by a Ping Pong Bi Bi mechanism. Cyanide and azide had no effect on the activity. The enzyme contained approx. 3.5 atoms of selenium per mol of protein. On immunoprecipitation, Chlamydomonas glutathione peroxidase was precipitated and its activity was inhibited about 90% by the antibody raised against bovine erythrocyte glutathione peroxidase. The antibody also cross-reacted with the subunits of Chlamydomonas glutathione peroxidase in Western blotting SDS/PAGE. In terms of enzymic, physico-chemical and immunological properties, the experimental results demonstrate clearly that Chlamydomonas glutathione peroxidase resembles other well-characterized glutathione peroxidases from animal sources that contain selenium.

Full text

PDF
623

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Awasthi Y. C., Beutler E., Srivastava S. K. Purification and properties of human erythrocyte glutathione peroxidase. J Biol Chem. 1975 Jul 10;250(13):5144–5149. [PubMed] [Google Scholar]
  2. Awasthi Y. C., Dao D. D., Lal A. K., Srivastava S. K. Purification and properties of glutathione peroxidase from human placenta. Biochem J. 1979 Feb 1;177(2):471–476. doi: 10.1042/bj1770471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bayfield R. F., Romalis L. F. PH Control in the fluorometric assay for selenium with 2,3-diaminonaphthalene. Anal Biochem. 1985 Feb 1;144(2):569–576. doi: 10.1016/0003-2697(85)90155-1. [DOI] [PubMed] [Google Scholar]
  4. Beutler E., Gelbart T. Improved assay of the enzymes of glutathione synthesis: gamma-glutamylcysteine synthetase and glutathione synthetase. Clin Chim Acta. 1986 Jul 15;158(1):115–123. doi: 10.1016/0009-8981(86)90122-1. [DOI] [PubMed] [Google Scholar]
  5. Boveris A., Sies H., Martino E. E., Docampo R., Turrens J. F., Stoppani A. O. Deficient metabolic utilization of hydrogen peroxide in Trypanosoma cruzi. Biochem J. 1980 Jun 15;188(3):643–648. doi: 10.1042/bj1880643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chiu D. T., Stults F. H., Tappel A. L. Purification and properties of rat lung soluble glutathione peroxidase. Biochim Biophys Acta. 1976 Oct 11;445(3):558–566. doi: 10.1016/0005-2744(76)90110-8. [DOI] [PubMed] [Google Scholar]
  7. Dalton D. A., Hanus F. J., Russell S. A., Evans H. J. Purification, properties, and distribution of ascorbate peroxidase in legume root nodules. Plant Physiol. 1987 Apr;83(4):789–794. doi: 10.1104/pp.83.4.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flohe L., Günzler W. A., Schock H. H. Glutathione peroxidase: a selenoenzyme. FEBS Lett. 1973 May 15;32(1):132–134. doi: 10.1016/0014-5793(73)80755-0. [DOI] [PubMed] [Google Scholar]
  9. Kelly G. J., Latzko E. Soluble ascorbate peroxidase: detection in plants and use in vitamim C estimation. Naturwissenschaften. 1979 Dec;66(12):617–619. doi: 10.1007/BF00405128. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Law M. Y., Charles S. A., Halliwell B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat. Biochem J. 1983 Mar 15;210(3):899–903. doi: 10.1042/bj2100899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MILLS G. C. The purification and properties of glutathione peroxidase of erythrocytes. J Biol Chem. 1959 Mar;234(3):502–506. [PubMed] [Google Scholar]
  13. Price N. M., Harrison P. J. Specific Selenium-Containing Macromolecules in the Marine Diatom Thalassiosira pseudonana. Plant Physiol. 1988 Jan;86(1):192–199. doi: 10.1104/pp.86.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shigeoka S., Nakano Y., Kitaoka S. Metabolism of hydrogen peroxide in Euglena gracilis Z by L-ascorbic acid peroxidase. Biochem J. 1980 Jan 15;186(1):377–380. doi: 10.1042/bj1860377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shigeoka S., Nakano Y., Kitaoka S. Purification and some properties of L-ascorbic-acid-specific peroxidase in Euglena gracilis Z. Arch Biochem Biophys. 1980 Apr 15;201(1):121–127. doi: 10.1016/0003-9861(80)90495-6. [DOI] [PubMed] [Google Scholar]
  16. Shigeoka S., Onishi T., Nakano Y., Kitaoka S. Characterization and physiological function of glutathione reductase in Euglena gracilis z. Biochem J. 1987 Mar 1;242(2):511–515. doi: 10.1042/bj2420511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sueltemeyer D. F., Klug K., Fock H. P. Effect of Photon Fluence Rate on Oxygen Evolution and Uptake by Chlamydomonas reinhardtii Suspensions Grown in Ambient and CO(2)-Enriched Air. Plant Physiol. 1986 Jun;81(2):372–375. doi: 10.1104/pp.81.2.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tappel A. L. Glutathione peroxidase and hydroperoxides. Methods Enzymol. 1978;52:506–513. doi: 10.1016/s0076-6879(78)52055-7. [DOI] [PubMed] [Google Scholar]
  19. Tel-Or E., Huflejt M. E., Packer L. Hydroperoxide metabolism in cyanobacteria. Arch Biochem Biophys. 1986 Apr;246(1):396–402. doi: 10.1016/0003-9861(86)90485-6. [DOI] [PubMed] [Google Scholar]
  20. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wendel A. Glutathione peroxidase. Methods Enzymol. 1981;77:325–333. doi: 10.1016/s0076-6879(81)77046-0. [DOI] [PubMed] [Google Scholar]
  22. Wu R. S., Stedman J. D., West M. H., Pantazis P., Bonner W. M. Discontinuous agarose electrophoretic system for the recovery of stained proteins from polyacrylamide gels. Anal Biochem. 1982 Aug;124(2):264–271. doi: 10.1016/0003-2697(82)90037-9. [DOI] [PubMed] [Google Scholar]
  23. Yokota A., Shigeoka S., Onishi T., Kitaoka S. Selenium as Inducer of Glutathione Peroxidase in low-CO(2)-Grown Chlamydomonas reinhardtii. Plant Physiol. 1988 Mar;86(3):649–651. doi: 10.1104/pp.86.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES