Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Mar 1;274(Pt 2):329–338. doi: 10.1042/bj2740329

The binding of D-gluconohydroximo-1,5-lactone to glycogen phosphorylase. Kinetic, ultracentrifugation and crystallographic studies.

A C Papageorgiou 1, N G Oikonomakos 1, D D Leonidas 1, B Bernet 1, D Beer 1, A Vasella 1
PMCID: PMC1150141  PMID: 1900987

Abstract

Combined kinetic, ultracentrifugation and X-ray-crystallographic studies have characterized the effect of the beta-glucosidase inhibitor gluconohydroximo-1,5-lactone on the catalytic and structural properties of glycogen phosphorylase. In the direction of glycogen synthesis, gluconohydroximo-1,5-lactone was found to competitively inhibit both the b (Ki 0.92 mM) and the alpha form of the enzyme (Ki 0.76 mM) with respect to glucose 1-phosphate in synergism with caffeine. In the direction of glycogen breakdown, gluconohydroximo-1,5-lactone was found to inhibit phosphorylase b in a non-competitive mode with respect to phosphate, and no synergism with caffeine could be demonstrated. Ultracentrifugation and crystallization experiments demonstrated that gluconohydroximo-1,5-lactone was able to induce dissociation of tetrameric phosphorylase alpha and stabilization of the dimeric T-state conformation. A crystallographic binding study with 100 mM-gluconohydroximo-1,5-lactone at 0.24 nm (2.4 A) resolution showed a major peak at the catalytic site, and no significant conformational changes were observed. Analysis of the electron-density map indicated that the ligand adopts a chair conformation. The results are discussed with reference to the ability of the catalytic site of the enzyme to distinguish between two or more conformations of the glucopyranose ring.

Full text

PDF
329

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariki M., Fukui T. Affinity of glucose analogs for alpha-glucan phosphorylases from rabbit muscle and potato tubers. J Biochem. 1977 Apr;81(4):1017–1024. doi: 10.1093/oxfordjournals.jbchem.a131523. [DOI] [PubMed] [Google Scholar]
  2. Barford D., Johnson L. N. The allosteric transition of glycogen phosphorylase. Nature. 1989 Aug 24;340(6235):609–616. doi: 10.1038/340609a0. [DOI] [PubMed] [Google Scholar]
  3. Barford D., Schwabe J. W., Oikonomakos N. G., Acharya K. R., Hajdu J., Papageorgiou A. C., Martin J. L., Knott J. C., Vasella A., Johnson L. N. Channels at the catalytic site of glycogen phosphorylase b: binding and kinetic studies with the beta-glycosidase inhibitor D-gluconohydroximo-1,5-lactone N-phenylurethane. Biochemistry. 1988 Sep 6;27(18):6733–6741. doi: 10.1021/bi00418a014. [DOI] [PubMed] [Google Scholar]
  4. Chang Y. C., Scott R. D., Graves D. J. Function of pyridoxal 5'-phosphate in glycogen phosphorylase: 19F NMR and kinetic studies of phosphorylase reconstituted with 6-fluoropyridoxal and 6-fluoropyridoxal phosphate. Biochemistry. 1986 Apr 22;25(8):1932–1939. doi: 10.1021/bi00356a015. [DOI] [PubMed] [Google Scholar]
  5. Cohen P. The subunit structure of rabbit-skeletal-muscle phosphorylase kinase, and the molecular basis of its activation reactions. Eur J Biochem. 1973 Apr 2;34(1):1–14. doi: 10.1111/j.1432-1033.1973.tb02721.x. [DOI] [PubMed] [Google Scholar]
  6. Engers H. D., Bridger W. A., Madsen N. B. Kinetic mechanism of phosphorylase b. Rates of initial velocities and of isotope exchange at equilibrium. J Biol Chem. 1969 Nov 10;244(21):5936–5942. [PubMed] [Google Scholar]
  7. Engers H. D., Shechosky S., Madsen N. B. Kinetic mechanism of phosphorylase a. I. Initial velocity studies. Can J Biochem. 1970 Jul;48(7):746–754. doi: 10.1139/o70-117. [DOI] [PubMed] [Google Scholar]
  8. Fletterick R. J., Sygusch J., Murray N., Madsen N. B. Low-resolution structure of the glycogen phosphorylase alpha monomer and comparison with phosphorylase beta. J Mol Biol. 1976 May 5;103(1):1–13. doi: 10.1016/0022-2836(76)90048-6. [DOI] [PubMed] [Google Scholar]
  9. Gold A. M., Legrand E., Sánchez G. R. Inhibition of muscle phosphorylase a by 5-gluconolactone. J Biol Chem. 1971 Sep 25;246(18):5700–5706. [PubMed] [Google Scholar]
  10. HELMREICH E., CORI C. F. THE ROLE OF ADENYLIC ACID IN THE ACTIVATION OF PHOSPHORYLASE. Proc Natl Acad Sci U S A. 1964 Jan;51:131–138. doi: 10.1073/pnas.51.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hajdu J., Acharya K. R., Stuart D. I., McLaughlin P. J., Barford D., Oikonomakos N. G., Klein H., Johnson L. N. Catalysis in the crystal: synchrotron radiation studies with glycogen phosphorylase b. EMBO J. 1987 Feb;6(2):539–546. doi: 10.1002/j.1460-2075.1987.tb04786.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Helmreich E., Michaelides M. C., Cori C. F. Effects of substrates and a substrate analog on the binding of 5'-adenylic acid to muscle phosphorylase a. Biochemistry. 1967 Dec;6(12):3695–3710. doi: 10.1021/bi00864a012. [DOI] [PubMed] [Google Scholar]
  13. Hu H. Y., Gold A. M. Inhibition of rabbit muscle glycogen phosphorylase by alpha-D-glucopyranose 1,2-cyclic phosphate. Biochim Biophys Acta. 1978 Jul 7;525(1):55–60. doi: 10.1016/0005-2744(78)90199-7. [DOI] [PubMed] [Google Scholar]
  14. Jenkins J. A., Johnson L. N., Stuart D. I., Stura E. A., Wilson K. S., Zanotti G. Phosphorylase: control and activity. Philos Trans R Soc Lond B Biol Sci. 1981 Jun 26;293(1063):23–41. doi: 10.1098/rstb.1981.0057. [DOI] [PubMed] [Google Scholar]
  15. Johnson L. N., Acharya K. R., Jordan M. D., McLaughlin P. J. Refined crystal structure of the phosphorylase-heptulose 2-phosphate-oligosaccharide-AMP complex. J Mol Biol. 1990 Feb 5;211(3):645–661. doi: 10.1016/0022-2836(90)90271-M. [DOI] [PubMed] [Google Scholar]
  16. Johnson L. N., Jenkins J. A., Wilson K. S., Stura E. A., Zanotti G. Proposals for the catalytic mechanism of glycogen phosphorylase beta prompted by crystallographic studies on glucose 1-phosphate binding. J Mol Biol. 1980 Jul 15;140(4):565–580. doi: 10.1016/0022-2836(80)90271-5. [DOI] [PubMed] [Google Scholar]
  17. Jones T. A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 1985;115:157–171. doi: 10.1016/0076-6879(85)15014-7. [DOI] [PubMed] [Google Scholar]
  18. Kastenschmidt L. L., Kastenschmidt J., Helmreich E. Subunit interactions and their relationship to the allosteric properties of rabbit skeletal muscle phosphorylase b. Biochemistry. 1968 Oct;7(10):3590–3608. doi: 10.1021/bi00850a037. [DOI] [PubMed] [Google Scholar]
  19. Kasvinsky P. J., Shechosky S., Fletterick R. J. Synergistic regulation of phosphorylase a by glucose and caffeine. J Biol Chem. 1978 Dec 25;253(24):9102–9106. [PubMed] [Google Scholar]
  20. Kasvinsky P. J. The effect of AMP on inhibition of muscle phosphorylase a by glucose derivatives. J Biol Chem. 1982 Sep 25;257(18):10805–10810. [PubMed] [Google Scholar]
  21. Klein H. W., Im M. J., Palm D. Mechanism of the phosphorylase reaction. Utilization of D-gluco-hept-1-enitol in the absence of primer. Eur J Biochem. 1986 May 15;157(1):107–114. doi: 10.1111/j.1432-1033.1986.tb09645.x. [DOI] [PubMed] [Google Scholar]
  22. Kraut J. How do enzymes work? Science. 1988 Oct 28;242(4878):533–540. doi: 10.1126/science.3051385. [DOI] [PubMed] [Google Scholar]
  23. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  24. Madsen N. B., Shechosky S., Fletterick R. J. Site-site interactions in glycogen phosphorylase b probed by ligands specific for each site. Biochemistry. 1983 Sep 13;22(19):4460–4465. doi: 10.1021/bi00288a017. [DOI] [PubMed] [Google Scholar]
  25. McLaughlin P. J., Stuart D. I., Klein H. W., Oikonomakos N. G., Johnson L. N. Substrate-cofactor interactions for glycogen phosphorylase b: a binding study in the crystal with heptenitol and heptulose 2-phosphate. Biochemistry. 1984 Nov 20;23(24):5862–5873. doi: 10.1021/bi00319a028. [DOI] [PubMed] [Google Scholar]
  26. Melpidou A. E., Oikonomakos N. G. Effect of glucose-6-P on the catalytic and structural properties of glycogen phosphorylase a. FEBS Lett. 1983 Apr 5;154(1):105–110. doi: 10.1016/0014-5793(83)80884-9. [DOI] [PubMed] [Google Scholar]
  27. Oikonomakos N. G., Acharya K. R., Stuart D. I., Melpidou A. E., McLaughlin P. J., Johnson L. N. Uridine(5')diphospho(1)-alpha-D-glucose. A binding study to glycogen phosphorylase b in the crystal. Eur J Biochem. 1988 May 2;173(3):569–578. doi: 10.1111/j.1432-1033.1988.tb14037.x. [DOI] [PubMed] [Google Scholar]
  28. Oikonomakos N. G., Johnson L. N., Acharya K. R., Stuart D. I., Barford D., Hajdu J., Varvill K. M., Melpidou A. E., Papageorgiou T., Graves D. J. Pyridoxal phosphate site in glycogen phosphorylase b: structure in native enzyme and in three derivatives with modified cofactors. Biochemistry. 1987 Dec 15;26(25):8381–8389. doi: 10.1021/bi00399a053. [DOI] [PubMed] [Google Scholar]
  29. Oikonomakos N. G., Melpidou A. E., Johnson L. N. Crystallization of pig skeletal phosphorylase b. Purification, physical and catalytic characterization. Biochim Biophys Acta. 1985 Dec 20;832(3):248–256. doi: 10.1016/0167-4838(85)90257-2. [DOI] [PubMed] [Google Scholar]
  30. Palm D., Klein H. W., Schinzel R., Buehner M., Helmreich E. J. The role of pyridoxal 5'-phosphate in glycogen phosphorylase catalysis. Biochemistry. 1990 Feb 6;29(5):1099–1107. doi: 10.1021/bi00457a001. [DOI] [PubMed] [Google Scholar]
  31. Papageorgiou A. C., Oikonomakos N. G., Leonidas D. D. Inhibition of rabbit muscle glycogen phosphorylase by D-gluconohydroximo-1,5-lactone-N-phenylurethane. Arch Biochem Biophys. 1989 Aug 1;272(2):376–385. doi: 10.1016/0003-9861(89)90231-2. [DOI] [PubMed] [Google Scholar]
  32. Sprang S. R., Goldsmith E. J., Fletterick R. J., Withers S. G., Madsen N. B. Catalytic site of glycogen phosphorylase: structure of the T state and specificity for alpha-D-glucose. Biochemistry. 1982 Oct 12;21(21):5364–5371. doi: 10.1021/bi00264a038. [DOI] [PubMed] [Google Scholar]
  33. Street I. P., Rupitz K., Withers S. G. Fluorinated and deoxygenated substrates as probes of transition-state structure in glycogen phosphorylase. Biochemistry. 1989 Feb 21;28(4):1581–1587. doi: 10.1021/bi00430a024. [DOI] [PubMed] [Google Scholar]
  34. Tu J. I., Jacobson G. R., Graves D. J. Isotopic effects and inhibition of polysaccharide phosphorylase by 1,5-gluconolactone. Relationship to the catalytic mechanism. Biochemistry. 1971 Mar 30;10(7):1229–1236. doi: 10.1021/bi00783a020. [DOI] [PubMed] [Google Scholar]
  35. WANG J. H., SHONKA M. L., GRAVES D. J. THE EFFECT OF GLUCOSE ON THE SEDIMENTATION AND CATALYTIC ACTIVITY OF GLYCOGEN PHOSPHORYLASE. Biochem Biophys Res Commun. 1965 Jan 4;18:131–135. doi: 10.1016/0006-291x(65)90895-8. [DOI] [PubMed] [Google Scholar]
  36. Weber I. T., Johnson L. N., Wilson K. S., Yeates D. G., Wild D. L., Jenkins J. A. Crystallographic studies on the activity of glycogen phosphorylase b. Nature. 1978 Aug 3;274(5670):433–437. doi: 10.1038/274433a0. [DOI] [PubMed] [Google Scholar]
  37. Withers S. G., Madsen N. B., Sprang S. R., Fletterick R. J. Catalytic site of glycogen phosphorylase: structural changes during activation and mechanistic implications. Biochemistry. 1982 Oct 12;21(21):5372–5382. doi: 10.1021/bi00264a039. [DOI] [PubMed] [Google Scholar]
  38. Withers S. G., Madsen N. B., Sykes B. D. Active form of pyridoxal phosphate in glycogen phosphorylase. Phosphorus-31 nuclear magentic resonance investigation. Biochemistry. 1981 Mar 31;20(7):1748–1756. doi: 10.1021/bi00510a007. [DOI] [PubMed] [Google Scholar]
  39. Withers S. G., Sykes B. D., Madsen N. B., Kasvinsky P. J. Identical structural changes induced in glycogen phosphorylase by two nonexclusive allosteric inhibitors. Biochemistry. 1979 Nov 27;18(24):5342–5348. doi: 10.1021/bi00591a013. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES