Abstract
The neutral maltase-glucoamylase complex has been purified to homogeneity from the brush-border membrane of rabbit intestine and kidney. Chemical modification of the amino acid side chains was carried out on the purified enzymes. Studies on the kidney enzyme revealed that tryptophan, histidine and cysteine were essential for both maltase and glucoamylase activities, whereas tryptophan, histidine and lysine were essential for the maltase and glucoamylase activities of the intestinal enzyme. Though there was no difference in the amino acids essential for the hydrolysis of maltose and starch by any one enzyme, starch hydrolysis seems to require two histidine residues instead of the one which is required for maltose hydrolysis. This appears to be true for both the intestinal and kidney enzymes.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bond M. D., Steinbrink D. R., Van Wart H. E. Identification of essential amino acid residues in clostridium histolyticum collagenase using chemical modification reactions. Biochem Biophys Res Commun. 1981 Sep 16;102(1):243–249. doi: 10.1016/0006-291x(81)91513-8. [DOI] [PubMed] [Google Scholar]
- Burstein Y., Walsh K. A., Neurath H. Evidence of an essential histidine residue in thermolysin. Biochemistry. 1974 Jan 1;13(1):205–210. doi: 10.1021/bi00698a030. [DOI] [PubMed] [Google Scholar]
- Bünning P., Holmquist B., Riordan J. F. Functional residues at the active site of angiotensin converting enzyme. Biochem Biophys Res Commun. 1978 Aug 29;83(4):1442–1449. doi: 10.1016/0006-291x(78)91382-7. [DOI] [PubMed] [Google Scholar]
- DAHLQVIST A. METHOD FOR ASSAY OF INTESTINAL DISACCHARIDASES. Anal Biochem. 1964 Jan;7:18–25. doi: 10.1016/0003-2697(64)90115-0. [DOI] [PubMed] [Google Scholar]
- Daron H. H., Aull J. L. Inactivation of dihydrofolate reductase from Lactobacillus casei by diethyl pyrocarbonate. Biochemistry. 1982 Feb 16;21(4):737–741. doi: 10.1021/bi00533a024. [DOI] [PubMed] [Google Scholar]
- Ganapathy V., Mendicino J. F., Leibach F. H. Transport of glycyl-L-proline into intestinal and renal brush border vesicles from rabbit. J Biol Chem. 1981 Jan 10;256(1):118–124. [PubMed] [Google Scholar]
- Keskar S. S., Srinivasan M. C., Deshpande V. V. Chemical modification of a xylanase from a thermotolerant Streptomyces. Evidence for essential tryptophan and cysteine residues at the active site. Biochem J. 1989 Jul 1;261(1):49–55. doi: 10.1042/bj2610049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEVY H. M., LEBER P. D., RYAN E. M. INACTIVATION OF MYOSIN BY 2,4-DINITROPHENOL AND PROTECTION BY ADENOSINE TRIPHOSPHATE AND OTHER PHOSPHATE COMPOUNDS. J Biol Chem. 1963 Nov;238:3654–3659. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Mannervik B., Marmstål E., Ekwall K., Górna-Hall B. Inactivation of glyoxalase I from porcine erythrocytes and yeast by amino-group reagents. Eur J Biochem. 1975 May 6;53(2):327–333. doi: 10.1111/j.1432-1033.1975.tb04072.x. [DOI] [PubMed] [Google Scholar]
- Manohar R., Appaji Rao N. Identification of active-site residues of sheep liver serine hydroxymethyltransferase. Biochem J. 1984 Dec 15;224(3):703–707. doi: 10.1042/bj2240703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miles E. W. Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol. 1977;47:431–442. doi: 10.1016/0076-6879(77)47043-5. [DOI] [PubMed] [Google Scholar]
- Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
- Pereira B., Sivakami S. Neutral maltase/glucoamylase from rabbit renal cortex. Biochem J. 1989 Jul 1;261(1):43–47. doi: 10.1042/bj2610043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips N. F., Goss N. H., Wood H. G. Modification of pyruvate, phosphate dikinase with pyridoxal 5'-phosphate: evidence for a catalytically critical lysine residue. Biochemistry. 1983 May 10;22(10):2518–2523. doi: 10.1021/bi00279a032. [DOI] [PubMed] [Google Scholar]
- Semenza G. Anchoring and biosynthesis of stalked brush border membrane proteins: glycosidases and peptidases of enterocytes and renal tubuli. Annu Rev Cell Biol. 1986;2:255–313. doi: 10.1146/annurev.cb.02.110186.001351. [DOI] [PubMed] [Google Scholar]
- Sivakami S., Radhakrishnan A. N. Kinetic studies on glucoamylase of rabbit small intestine. Biochem J. 1976 Feb 1;153(2):321–327. doi: 10.1042/bj1530321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sivakami S., Radhakrishnan A. N. Purification of rabbit intestinal glucoamylase by affinity chromatography on Sephadex G-200. Indian J Biochem Biophys. 1973 Dec;10(4):283–284. [PubMed] [Google Scholar]
- Yaguchi M., Roy C., Rollin C. F., Paice M. G., Jurasek L. A fungal cellulase shows sequence homology with the active site of hen egg-white lysozyme. Biochem Biophys Res Commun. 1983 Oct 31;116(2):408–411. doi: 10.1016/0006-291x(83)90537-5. [DOI] [PubMed] [Google Scholar]