Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Mar 1;274(Pt 2):473–480. doi: 10.1042/bj2740473

The principal site of glycation of human complement factor B.

M A Niemann 1, A S Bhown 1, E J Miller 1
PMCID: PMC1150163  PMID: 2006911

Abstract

Accumulating amino acid sequence data have made it increasingly evident that many essential complement proteins have potentially modifiable lysine residues in putative critical functional regions. Evidence is now presented that glucose is covalently attached to lysine-266 of purified human complement Factor B as a result of glycation. Purified B was treated with NaB3H4, which reduces such bound glucose to a mixture of radiolabelled hexitols. Amino acid analysis revealed the expected radiolabelled hexitol-lysine epimers. In addition, fluorography of dried gels resolving the major high-molecular-mass h.p.l.c.-fractionated CNBr-cleavage peptides of NaB3H4-reduced B indicated that this radioactivity was specifically associated with the 15 kDa fragment derived from the N-terminal region of fragment Bb. Amino acid sequence analysis suggested that the C-terminal lysine (residue 266 of B) of the N-terminal Lys-Lys doublet of this peptide is preferentially modified. If such glycation can subsequently be shown to occur in vivo, then perhaps this modification might also be found to affect the functional activity of B and offer a potential explanation for some of the immunopathological complications of diseases exposing key plasma proteins, such as this active-site-containing proteinase of the multimeric alternative-complement-pathway C3/C5 convertases, to long-term high concentrations of glucose, such as the decreased resistance to infection and impaired chemotaxis and phagocytosis characteristic of diabetes.

Full text

PDF
473

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BALCH H. H., WATTERS M. Blood bactericidal studies and serum complement in diabetic patients. J Surg Res. 1963 Jun;3:199–212. doi: 10.1016/s0022-4804(63)80058-x. [DOI] [PubMed] [Google Scholar]
  2. Bagdade J. D. Phagocytic and microbicidal function in diabetes mellitus. Acta Endocrinol Suppl (Copenh) 1976;205:27–34. [PubMed] [Google Scholar]
  3. Belt K. T., Carroll M. C., Porter R. R. The structural basis of the multiple forms of human complement component C4. Cell. 1984 Apr;36(4):907–914. doi: 10.1016/0092-8674(84)90040-0. [DOI] [PubMed] [Google Scholar]
  4. Bentley D. R. Primary structure of human complement component C2. Homology to two unrelated protein families. Biochem J. 1986 Oct 15;239(2):339–345. doi: 10.1042/bj2390339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhown A. S., Bennett J. C. A modified system for thiazolinone conversion to thiohydantoin derivatives and their separation by high-pressure liquid chromatography. Anal Biochem. 1985 Nov 1;150(2):457–462. doi: 10.1016/0003-2697(85)90535-4. [DOI] [PubMed] [Google Scholar]
  6. Brownlee M., Vlassara H., Cerami A. Inhibition of heparin-catalyzed human antithrombin III activity by nonenzymatic glycosylation. Possible role in fibrin deposition in diabetes. Diabetes. 1984 Jun;33(6):532–535. doi: 10.2337/diab.33.6.532. [DOI] [PubMed] [Google Scholar]
  7. Brownlee M., Vlassara H., Cerami A. Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med. 1984 Oct;101(4):527–537. doi: 10.7326/0003-4819-101-4-527. [DOI] [PubMed] [Google Scholar]
  8. Bunn H. F., Gabbay K. H., Gallop P. M. The glycosylation of hemoglobin: relevance to diabetes mellitus. Science. 1978 Apr 7;200(4337):21–27. doi: 10.1126/science.635569. [DOI] [PubMed] [Google Scholar]
  9. Ceriello A., Dello Russo P., Zuccotti C., Florio A., Nazzaro S., Pietrantuono C., Rosato G. B. Decreased antithrombin III activity in diabetes may be due to non-enzymatic glycosylation--a preliminary report. Thromb Haemost. 1983 Oct 31;50(3):633–634. [PubMed] [Google Scholar]
  10. Charlesworth J. A., Timmermans V., Golding J., Campbell L. V., Peake P. W., Pussell B. A., Wakefield D., Howard N. The complement system in type 1 (insulin-dependent) diabetes. Diabetologia. 1987 Jun;30(6):372–379. doi: 10.1007/BF00292537. [DOI] [PubMed] [Google Scholar]
  11. Eble A. S., Thorpe S. R., Baynes J. W. Nonenzymatic glucosylation and glucose-dependent cross-linking of protein. J Biol Chem. 1983 Aug 10;258(15):9406–9412. [PubMed] [Google Scholar]
  12. Gagnon J. Structure and activation of complement components C2 and factor B. Philos Trans R Soc Lond B Biol Sci. 1984 Sep 6;306(1129):301–309. doi: 10.1098/rstb.1984.0091. [DOI] [PubMed] [Google Scholar]
  13. Garlick R. L., Mazer J. S., Higgins P. J., Bunn H. F. Characterization of glycosylated hemoglobins. Relevance to monitoring of diabetic control and analysis of other proteins. J Clin Invest. 1983 May;71(5):1062–1072. doi: 10.1172/JCI110856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garlick R. L., Mazer J. S. The principal site of nonenzymatic glycosylation of human serum albumin in vivo. J Biol Chem. 1983 May 25;258(10):6142–6146. [PubMed] [Google Scholar]
  15. Gresham H. D., Matthews D. F., Griffin F. M., Jr Isolation of human complement component C3 from small volumes of plasma. Anal Biochem. 1986 May 1;154(2):454–459. doi: 10.1016/0003-2697(86)90014-x. [DOI] [PubMed] [Google Scholar]
  16. Jouvin M. H., Kazatchkine M. D., Cahour A., Bernard N. Lysine residues, but not carbohydrates, are required for the regulatory function of H on the amplification C3 convertase of complement. J Immunol. 1984 Dec;133(6):3250–3254. [PubMed] [Google Scholar]
  17. Kennedy L., Baynes J. W. Non-enzymatic glycosylation and the chronic complications of diabetes: an overview. Diabetologia. 1984 Feb;26(2):93–98. doi: 10.1007/BF00281113. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. McMillan D. E. Elevation of complement components in diabetes mellitus. Diabete Metab. 1980 Dec;6(4):265–270. [PubMed] [Google Scholar]
  20. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  21. Miller E. J. Structural studies on cartilage collagen employing limited cleavage and solubilization with pepsin. Biochemistry. 1972 Dec 19;11(26):4903–4909. doi: 10.1021/bi00776a005. [DOI] [PubMed] [Google Scholar]
  22. Niemann M. A., Bhown A. S., Bennett J. C., Volanakis J. E. Amino acid sequence of human D of the alternative complement pathway. Biochemistry. 1984 May 22;23(11):2482–2486. doi: 10.1021/bi00306a025. [DOI] [PubMed] [Google Scholar]
  23. Niemann M. A., Kearney J. F., Volanakis J. E. The use of monoclonal antibodies as probes of the three-dimensional structure of human complement factor D. J Immunol. 1984 Feb;132(2):809–815. [PubMed] [Google Scholar]
  24. Niemann M. A., Mole J. E. Characterization of the CNBr peptides generated from the factor B cleavage fragments, Ba and Bb, by molecular exclusion high performance liquid chromatography. Immunol Commun. 1982;11(1):47–58. doi: 10.3109/08820138209050723. [DOI] [PubMed] [Google Scholar]
  25. Niemann M. A., Volanakis J. E., Mole J. E. Amino-terminal sequence of human factor B of the alternative complement pathway and its cleavage fragments, Ba and Bb. Biochemistry. 1980 Apr 15;19(8):1576–1583. doi: 10.1021/bi00549a007. [DOI] [PubMed] [Google Scholar]
  26. Oglesby T. J., Accavitti M. A., Volanakis J. E. Evidence for a C4b binding site on the C2b domain of C2. J Immunol. 1988 Aug 1;141(3):926–931. [PubMed] [Google Scholar]
  27. Okada S., Sato K., Miyai Y., Masaki Y., Higuchi T., Ogino Y., Ota Z. Serum C3 and C4 levels and complement-dependent antibody-mediated cytotoxic activity of islet cell surface antibody in type 1 (insulin-dependent) diabetic children. Diabetologia. 1987 Nov;30(11):869–873. doi: 10.1007/BF00274796. [DOI] [PubMed] [Google Scholar]
  28. Pollak A., Coradello H., Leban J., Maxa E., Sternberg M., Widhalm K., Lubec G. Inhibition of alkaline phosphatase activity by glucose. Clin Chim Acta. 1983 Sep 15;133(1):15–24. doi: 10.1016/0009-8981(83)90016-5. [DOI] [PubMed] [Google Scholar]
  29. Powell E. D., Field R. A. Studies on salicylates and complement in diabetes. Diabetes. 1966 Oct;15(10):730–733. doi: 10.2337/diab.15.10.730. [DOI] [PubMed] [Google Scholar]
  30. Schleicher E., Wieland O. H. Specific quantitation by HPLC of protein (lysine) bound glucose in human serum albumin and other glycosylated proteins. J Clin Chem Clin Biochem. 1981 Feb;19(2):81–87. doi: 10.1515/cclm.1981.19.2.81. [DOI] [PubMed] [Google Scholar]
  31. Shapiro R., McManus M. J., Zalut C., Bunn H. F. Sites of nonenzymatic glycosylation of human hemoglobin A. J Biol Chem. 1980 Apr 10;255(7):3120–3127. [PubMed] [Google Scholar]
  32. Smith C. A., Vogel C. W., Müller-Eberhard H. J. Ultrastructure of cobra venom factor-dependent C3/C5 convertase and its zymogen, factor B of human complement. J Biol Chem. 1982 Sep 10;257(17):9879–9882. [PubMed] [Google Scholar]
  33. Szelényi J. G., Földi J., Hollán S. R. Enhanced nonenzymatic glycosylation of blood proteins in stored blood. Transfusion. 1983 Jan-Feb;23(1):11–14. doi: 10.1046/j.1537-2995.1983.23183147296.x. [DOI] [PubMed] [Google Scholar]
  34. Tack B. F., Morris S. C., Prahl J. W. Third component of human complement: structural analysis of the polypeptide chains of C3 and C3b. Biochemistry. 1979 Apr 17;18(8):1497–1503. doi: 10.1021/bi00575a017. [DOI] [PubMed] [Google Scholar]
  35. Tomana M., Niemann M., Garner C., Volanakis J. E. Carbohydrate composition of the second, third and fifth components and factors B and D of human complement. Mol Immunol. 1985 Feb;22(2):107–111. doi: 10.1016/s0161-5890(85)80004-3. [DOI] [PubMed] [Google Scholar]
  36. Trüeb B., Hughes G. J., Winterhalter K. H. Synthesis and quantitation of glucitollysine, a glycosylated amino acid elevated in proteins from diabetics. Anal Biochem. 1982 Jan 15;119(2):330–334. doi: 10.1016/0003-2697(82)90594-2. [DOI] [PubMed] [Google Scholar]
  37. Ueda A., Kearney J. F., Roux K. H., Volanakis J. E. Probing functional sites on complement protein B with monoclonal antibodies. Evidence for C3b-binding sites on Ba. J Immunol. 1987 Feb 15;138(4):1143–1149. [PubMed] [Google Scholar]
  38. Yue D. K., McLennan S., Turtle J. R. Non-enzymatic glycosylation of tissue protein in diabetes in the rat. Diabetologia. 1983 May;24(5):377–381. doi: 10.1007/BF00251828. [DOI] [PubMed] [Google Scholar]
  39. de Bruijn M. H., Fey G. H. Human complement component C3: cDNA coding sequence and derived primary structure. Proc Natl Acad Sci U S A. 1985 Feb;82(3):708–712. doi: 10.1073/pnas.82.3.708. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES