Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Feb 15;274(Pt 1):153–158. doi: 10.1042/bj2740153

Regulation of Cu,Zn superoxide dismutase with copper. Caeruloplasmin maintains levels of functional enzyme activity during differentiation of K562 cells.

S S Percival 1, E D Harris 1
PMCID: PMC1150191  PMID: 1900417

Abstract

K562 cells, a human erythroleukaemic cell line blocked for differentiation, commit towards erythrocytes when exposed to haemin (20 microM). The cells synthesize fetal haemoglobins and show site-specific binding of caeruloplasmin, a plasma copper protein. These events are set into motion by haemin. On the assumption that the binding of caeruloplasmin could reflect a greater need for copper, we sought to determine whether the transfer of 67Cu from caeruloplasmin was accelerated in haemin-induced compared with non-induced K562 cells. Cu,Zn superoxide dismutase (CuZnSOD) was the recipient. Haemin induction caused the K562 cells to lose CuZnSOD activity. By 96 h, the level of SOD activity was less than 60% of that of non-induced cells. The loss was confined entirely to the CuZn form, MnSOD activity staying essentially unchanged. Although CuZnSOD activity declined with the haemin induction, the incorporation of [4,5-3H]lysine into immunoprecipitable CuZnSOD protein was unaffected. There was also no change in CuZnSOD mRNA concentration in haemin-induced cells. Thus a loss of enzyme did not correlate with a decline in the synthesis de novo of CuZnSOD protein. When 48 h-induced cells were transferred to a medium supplemented with 0.2 microM-caeruloplasmin, CuZnSOD activity was restored to control levels in 24 h. Caeruloplasmin also stimulated the incorporation of [3H]lysine into immunoprecipitable CuZnSOD protein. Caeruloplasmin addition may have affected a post-translational regulatory site for CuZnSOD biosynthesis, possibly by providing copper for the newly synthesized enzyme.

Full text

PDF
153

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. G., Balin A. K. Developmental changes in the superoxide dismutase activity of human skin fibroblasts are maintained in vitro and are not caused by oxygen. J Clin Invest. 1988 Aug;82(2):731–734. doi: 10.1172/JCI113654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen R. G., Balin A. K., Reimer R. J., Sohal R. S., Nations C. Superoxide dismutase induces differentiation in microplasmodia of the slime mold Physarum polycephalum. Arch Biochem Biophys. 1988 Feb 15;261(1):205–211. doi: 10.1016/0003-9861(88)90119-1. [DOI] [PubMed] [Google Scholar]
  3. Andersson L. C., Jokinen M., Gahmberg C. G. Induction of erythroid differentiation in the human leukaemia cell line K562. Nature. 1979 Mar 22;278(5702):364–365. doi: 10.1038/278364a0. [DOI] [PubMed] [Google Scholar]
  4. Auwerx J. H., Chait A., Wolfbauer G., Deeb S. S. Loss of copper-zinc superoxide dismutase gene expression in differentiated cells of myelo-monocytic origin. Blood. 1989 Oct;74(5):1807–1810. [PubMed] [Google Scholar]
  5. Bartha E., Oláh E., Szelényi J. G., Hollan S. R. Characterization of "fetal-type" acetylcholinesterase in hemin-treated K562 cell culture. Blood Cells. 1987;12(3):647–655. [PubMed] [Google Scholar]
  6. Beckman B. S., Balin A. K., Allen R. G. Superoxide dismutase induces differentiation of Friend erythroleukemia cells. J Cell Physiol. 1989 May;139(2):370–376. doi: 10.1002/jcp.1041390220. [DOI] [PubMed] [Google Scholar]
  7. Bettger W. J., Fish T. J., O'dell B. L. Effects of copper and zinc status of rats on erythrocyte stability and superoxide dismutase activity. Proc Soc Exp Biol Med. 1978 Jun;158(2):279–282. doi: 10.3181/00379727-158-40188. [DOI] [PubMed] [Google Scholar]
  8. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  9. Chung K., Romero N., Tinker D., Keen C. L., Amemiya K., Rucker R. Role of copper in the regulation and accumulation of superoxide dismutase and metallothionein in rat liver. J Nutr. 1988 Jul;118(7):859–864. doi: 10.1093/jn/118.7.859. [DOI] [PubMed] [Google Scholar]
  10. Cioe L., McNab A., Hubbell H. R., Meo P., Curtis P., Rovera G. Differential expression of the globin genes in human leukemia K562(S) cells induced to differentiate by hemin or butyric acid. Cancer Res. 1981 Jan;41(1):237–243. [PubMed] [Google Scholar]
  11. Dameron C. T., Harris E. D. Regulation of aortic CuZn-superoxide dismutase with copper. Caeruloplasmin and albumin re-activate and transfer copper to the enzyme in culture. Biochem J. 1987 Dec 15;248(3):669–675. doi: 10.1042/bj2480669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dameron C. T., Harris E. D. Regulation of aortic CuZn-superoxide dismutase with copper. Effects in vivo. Biochem J. 1987 Dec 15;248(3):663–668. doi: 10.1042/bj2480663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fleming R. E., Gitlin J. D. Primary structure of rat ceruloplasmin and analysis of tissue-specific gene expression during development. J Biol Chem. 1990 May 5;265(13):7701–7707. [PubMed] [Google Scholar]
  14. Fukuda M. K562 human leukaemic cells express fetal type (i) antigen on different glycoproteins from circulating erythrocytes. Nature. 1980 Jun 5;285(5764):405–407. doi: 10.1038/285405a0. [DOI] [PubMed] [Google Scholar]
  15. Galeotti T., Wohlrab H., Borrello S., De Leo M. E. Messenger RNA for manganese and copper-zinc superoxide dismutases in hepatomas: correlation with degree of differentiation. Biochem Biophys Res Commun. 1989 Dec 15;165(2):581–589. doi: 10.1016/s0006-291x(89)80006-3. [DOI] [PubMed] [Google Scholar]
  16. Galiazzo F., Schiesser A., Rotilio G. Oxygen-independent induction of enzyme activities related to oxygen metabolism in yeast by copper. Biochim Biophys Acta. 1988 Apr 14;965(1):46–51. doi: 10.1016/0304-4165(88)90149-3. [DOI] [PubMed] [Google Scholar]
  17. Ichiki A. T., Bamberger E. G., Wust C. J., Lozzio C. B. Diversity of cell surface hematopoietic antigens on K-562 sublines identified with monoclonal antibodies. Leuk Res. 1986;10(5):565–574. doi: 10.1016/0145-2126(86)90092-5. [DOI] [PubMed] [Google Scholar]
  18. Malik Z., Chitayat S. D., Langzam Y. Hemin dependent morphological maturation and endogenous porphyrin synthesis by K562 leukemic cells. Cancer Lett. 1988 Aug 15;41(2):203–209. doi: 10.1016/0304-3835(88)90117-6. [DOI] [PubMed] [Google Scholar]
  19. Marceau N., Aspin N. The intracellular distribution of the radiocopper derived from ceruloplasmin and from albumin. Biochim Biophys Acta. 1973 Dec 6;328(2):338–350. doi: 10.1016/0005-2795(73)90267-5. [DOI] [PubMed] [Google Scholar]
  20. Marklund S., Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974 Sep 16;47(3):469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x. [DOI] [PubMed] [Google Scholar]
  21. Merchant S., Bogorad L. Rapid degradation of apoplastocyanin in Cu(II)-deficient cells of Chlamydomonas reinhardtii. J Biol Chem. 1986 Dec 5;261(34):15850–15853. [PubMed] [Google Scholar]
  22. Pelosi E., Testa U., Louache F., Thomopoulos P., Salvo G., Samoggia P., Peschle C. Expression of transferrin receptors in phytohemagglutinin-stimulated human T-lymphocytes. Evidence for a three-step model. J Biol Chem. 1986 Mar 5;261(7):3036–3042. [PubMed] [Google Scholar]
  23. Percival S. S., Harris E. D. Ascorbate enhances copper transport from ceruloplasmin into human K562 cells. J Nutr. 1989 May;119(5):779–784. doi: 10.1093/jn/119.5.779. [DOI] [PubMed] [Google Scholar]
  24. Percival S. S., Harris E. D. Copper transport from ceruloplasmin: characterization of the cellular uptake mechanism. Am J Physiol. 1990 Jan;258(1 Pt 1):C140–C146. doi: 10.1152/ajpcell.1990.258.1.C140. [DOI] [PubMed] [Google Scholar]
  25. Petraki H., Ioannides C. G., Filli S., Papamichail M. Loss and reappearance of transferrin receptors in human leukemic cell lines. Exp Cell Biol. 1986;54(2):80–88. doi: 10.1159/000163347. [DOI] [PubMed] [Google Scholar]
  26. Ripalda M. J., Rudolph N., Wong S. L. Developmental patterns of antioxidant defense mechanisms in human erythrocytes. Pediatr Res. 1989 Oct;26(4):366–369. doi: 10.1203/00006450-198910000-00016. [DOI] [PubMed] [Google Scholar]
  27. Rouault T., Rao K., Harford J., Mattia E., Klausner R. D. Hemin, chelatable iron, and the regulation of transferrin receptor biosynthesis. J Biol Chem. 1985 Nov 25;260(27):14862–14866. [PubMed] [Google Scholar]
  28. Rutherford T. R., Clegg J. B., Weatherall D. J. K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature. 1979 Jul 12;280(5718):164–165. doi: 10.1038/280164a0. [DOI] [PubMed] [Google Scholar]
  29. Rutherford T., Clegg J. B., Higgs D. R., Jones R. W., Thompson J., Weatherall D. J. Embryonic erythroid differentiation in the human leukemic cell line K562. Proc Natl Acad Sci U S A. 1981 Jan;78(1):348–352. doi: 10.1073/pnas.78.1.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Saito H., Kuroki T., Nose K. Decrease in CuZn-superoxide dismutase mRNA level during differentiation of human monocytic and promyelotic leukemia cells. FEBS Lett. 1989 Jun 5;249(2):253–256. doi: 10.1016/0014-5793(89)80634-9. [DOI] [PubMed] [Google Scholar]
  31. Saltman P. Oxidative stress: a radical view. Semin Hematol. 1989 Oct;26(4):249–256. [PubMed] [Google Scholar]
  32. Sherman L., Dafni N., Lieman-Hurwitz J., Groner Y. Nucleotide sequence and expression of human chromosome 21-encoded superoxide dismutase mRNA. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5465–5469. doi: 10.1073/pnas.80.18.5465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Speier C., Newburger P. E. Changes in superoxide dismutase, catalase, and the glutathione cycle during induced myeloid differentiation. Arch Biochem Biophys. 1986 Dec;251(2):551–557. doi: 10.1016/0003-9861(86)90363-2. [DOI] [PubMed] [Google Scholar]
  34. Testa U., Henri A., Bettaieb A., Titeux M., Vainchenker W., Tonthat H., Docklear M. C., Rochant H. Regulation of i- and I-antigen expression in the K562 cell line. Cancer Res. 1982 Nov;42(11):4694–4700. [PubMed] [Google Scholar]
  35. Weisiger R. A., Fridovich I. Superoxide dismutase. Organelle specificity. J Biol Chem. 1973 May 25;248(10):3582–3592. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES