Abstract
The present paper reports the tryptic digestion of N-ethylmaleimide-treated S-adenosyl-L-methionine synthetase (high- and low-Mr forms) and the isolation of the modified peptides by h.p.l.c. There is only one site modified after 5 min incubation, and the modification at this site correlates with the main activity decrease. The amino acid composition of this peptide was determined, and its localization in the sequence shows the modified residue as cysteine-150, which is located close to the putative ATP-binding site. Modification of the enzyme for 20 min led to the appearance of a second labelled peptide, which seems to be responsible for about a further 10% of the activity loss. The modification by N-ethylmaleimide of the enzyme was partially prevented in the presence of adenosine 5'-[beta gamma-imido]triphosphate and methionine, further supporting the hypothesis that the modified residues lie within the active site. Urea treatment of the enzyme, followed by modification with N-ethylmaleimide, produces the modification of 7 of the 10 cysteine residues present in the sequence. The results obtained were the same for either of the isoforms.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brown R. D., Matthews K. S. Chemical modification of lactose repressor protein using N-substituted maleimides. J Biol Chem. 1979 Jun 25;254(12):5128–5134. [PubMed] [Google Scholar]
- Cabrero C., Alemany S. Conversion of rat liver S-adenosyl-L-methionine synthetase from high-Mr form to low-Mr form by LiBr. Biochim Biophys Acta. 1988 Feb 10;952(3):277–281. doi: 10.1016/0167-4838(88)90127-6. [DOI] [PubMed] [Google Scholar]
- Cabrero C., Puerta J., Alemany S. Purification and comparison of two forms of S-adenosyl-L-methionine synthetase from rat liver. Eur J Biochem. 1987 Dec 30;170(1-2):299–304. doi: 10.1111/j.1432-1033.1987.tb13699.x. [DOI] [PubMed] [Google Scholar]
- Cantoni G. L. Biological methylation: selected aspects. Annu Rev Biochem. 1975;44:435–451. doi: 10.1146/annurev.bi.44.070175.002251. [DOI] [PubMed] [Google Scholar]
- Cherest H., Surdin-Kerjan Y. S-adenosyl methionine requiring mutants in Saccharomyces cerevisiae: evidences for the existence of two methionine adenosyl transferases. Mol Gen Genet. 1978 Jul 11;163(2):153–167. doi: 10.1007/BF00267406. [DOI] [PubMed] [Google Scholar]
- Chiang P. K., Cantoni G. L. Activation of methionine for transmethylation. Purification of the S-adenosylmethionine synthetase of bakers' yeast and its separation into two forms. J Biol Chem. 1977 Jul 10;252(13):4506–4513. [PubMed] [Google Scholar]
- Corrales F., Cabrero C., Pajares M. A., Ortiz P., Martin-Duce A., Mato J. M. Inactivation and dissociation of S-adenosylmethionine synthetase by modification of sulfhydryl groups and its possible occurrence in cirrhosis. Hepatology. 1990 Feb;11(2):216–222. doi: 10.1002/hep.1840110210. [DOI] [PubMed] [Google Scholar]
- Fujioka M., Konishi K., Takata Y. Recombinant rat liver guanidinoacetate methyltransferase: reactivity and function of sulfhydryl groups. Biochemistry. 1988 Oct 4;27(20):7658–7664. doi: 10.1021/bi00420a013. [DOI] [PubMed] [Google Scholar]
- Gilliland G. L., Markham G. D., Davies D. R. S-adenosylmethionine synthetase from Escherichia coli. Crystallization and preliminary X-ray diffraction studies. J Biol Chem. 1983 Jun 10;258(11):6963–6964. [PubMed] [Google Scholar]
- Horikawa S., Ishikawa M., Ozasa H., Tsukada K. Isolation of a cDNA encoding the rat liver S-adenosylmethionine synthetase. Eur J Biochem. 1989 Oct 1;184(3):497–501. doi: 10.1111/j.1432-1033.1989.tb15042.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Markham G. D., DeParasis J., Gatmaitan J. The sequence of metK, the structural gene for S-adenosylmethionine synthetase in Escherichia coli. J Biol Chem. 1984 Dec 10;259(23):14505–14507. [PubMed] [Google Scholar]
- Markham G. D., Hafner E. W., Tabor C. W., Tabor H. S-Adenosylmethionine synthetase from Escherichia coli. J Biol Chem. 1980 Oct 10;255(19):9082–9092. [PubMed] [Google Scholar]
- Markham G. D., Satishchandran C. Identification of the reactive sulfhydryl groups of S-adenosylmethionine synthetase. J Biol Chem. 1988 Jun 25;263(18):8666–8670. [PubMed] [Google Scholar]
- Nakanishi Y., Isohashi F., Ebisuno S., Sakamoto Y. Sulfhydryl groups of an extramitochondrial acetyl-CoA hydrolase from rat liver. Biochim Biophys Acta. 1989 Jul 6;996(3):209–213. doi: 10.1016/0167-4838(89)90249-5. [DOI] [PubMed] [Google Scholar]
- Pardo J. P., Slayman C. W. Cysteine 532 and cysteine 545 are the N-ethylmaleimide-reactive residues of the Neurospora plasma membrane H+-ATPase. J Biol Chem. 1989 Jun 5;264(16):9373–9379. [PubMed] [Google Scholar]
- Pegg A. E., Williams-Ashman H. G. Enzymic synthesis of spermine in rat prostate. Arch Biochem Biophys. 1970 Mar;137(1):156–165. doi: 10.1016/0003-9861(70)90422-4. [DOI] [PubMed] [Google Scholar]
- Raina A., Jänne J. Physiology of the natural polyamines putrescine, spermidine and spermine. Med Biol. 1975 Jun;53(3):121–147. [PubMed] [Google Scholar]
- Smith D. K., Palek J. Sulfhydryl reagents induce altered spectrin self-association, skeletal instability, and increased thermal sensitivity of red cells. Blood. 1983 Dec;62(6):1190–1196. [PubMed] [Google Scholar]
- Thomas D., Rothstein R., Rosenberg N., Surdin-Kerjan Y. SAM2 encodes the second methionine S-adenosyl transferase in Saccharomyces cerevisiae: physiology and regulation of both enzymes. Mol Cell Biol. 1988 Dec;8(12):5132–5139. doi: 10.1128/mcb.8.12.5132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas D., Surdin-Kerjan Y. SAM1, the structural gene for one of the S-adenosylmethionine synthetases in Saccharomyces cerevisiae. Sequence and expression. J Biol Chem. 1987 Dec 5;262(34):16704–16709. [PubMed] [Google Scholar]
- Wierenga R. K., Terpstra P., Hol W. G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. doi: 10.1016/0022-2836(86)90409-2. [DOI] [PubMed] [Google Scholar]
