Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Feb 15;274(Pt 1):297–300. doi: 10.1042/bj2740297

The effects of selenium deficiency on hepatic type-I iodothyronine deiodinase and protein disulphide-isomerase assessed by activity measurements and affinity labelling.

J R Arthur 1, F Nicol 1, E Grant 1, G J Beckett 1
PMCID: PMC1150193  PMID: 2001246

Abstract

We determined protein disulphide-isomerase (PDI) and iodothyronine deiodinase (ID-I) activities in liver homogenates from rats subjected to selenium (Se) and/or iodine deficiencies and food restriction. Additionally, the effects of propylthiouracil (PTU) on the enzymes were studied in vivo and in vitro. Selenium deficiency markedly inhibited ID-I activity, but had no significant effects on PDI. Iodine deficiency resulted in a 1.6-fold stimulation in ID-I and a 1.2-fold stimulation in PDI activities. ID-I was much more sensitive than PDI to the inhibitory effects of PTU both in vitro and in vivo. By using a 3,3',5'-tri[125I]iodothyronine affinity label, two major protein bands were identified when hepatic microsomal fractions from Se-sufficient rats were subjected to SDS/PAGE and autoradiography. These bands had molecular masses of 55 and 27.5 kDa, which are similar to those of PDI and ID-I respectively. Selenium deficiency resulted in the loss of the 27.5 kDa band, but did not affect the intensity of the 55 kDa band. These results are consistent with the changes in PDI and ID-I enzyme activities. Previous studies have shown that 75Se may be incorporated in vivo into the 27.5 kDa protein band. This, taken together with our observation that Se is required for the expression of ID-I and the 27.5 kDa protein band, strongly suggests that ID-I is a selenoprotein.

Full text

PDF
297

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur J. R., Nicol F., Beckett G. J. Hepatic iodothyronine 5'-deiodinase. The role of selenium. Biochem J. 1990 Dec 1;272(2):537–540. doi: 10.1042/bj2720537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arthur J. R., Nicol F., Hutchinson A. R., Beckett G. J. The effects of selenium depletion and repletion on the metabolism of thyroid hormones in the rat. J Inorg Biochem. 1990 Jun;39(2):101–108. doi: 10.1016/0162-0134(90)80018-s. [DOI] [PubMed] [Google Scholar]
  3. Bassuk J. A., Berg R. A. Protein disulphide isomerase, a multifunctional endoplasmic reticulum protein. Matrix. 1989 Jun;9(3):244–258. doi: 10.1016/s0934-8832(89)80057-5. [DOI] [PubMed] [Google Scholar]
  4. Beckett G. J., Beddows S. E., Morrice P. C., Nicol F., Arthur J. R. Inhibition of hepatic deiodination of thyroxine is caused by selenium deficiency in rats. Biochem J. 1987 Dec 1;248(2):443–447. doi: 10.1042/bj2480443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beckett G. J., MacDougall D. A., Nicol F., Arthur R. Inhibition of type I and type II iodothyronine deiodinase activity in rat liver, kidney and brain produced by selenium deficiency. Biochem J. 1989 May 1;259(3):887–892. doi: 10.1042/bj2590887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beckett G. J., Nicol F., Proudfoot D., Dyson K., Loucaides G., Arthur J. R. The changes in hepatic enzyme expression caused by selenium deficiency and hypothyroidism in rats are produced by independent mechanisms. Biochem J. 1990 Mar 15;266(3):743–747. doi: 10.1042/bj2660743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boado R. J., Campbell D. A., Chopra I. J. Nucleotide sequence of rat liver iodothyronine 5'-monodeiodinase (5' MD): its identity with the protein disulfide isomerase. Biochem Biophys Res Commun. 1988 Sep 30;155(3):1297–1304. doi: 10.1016/s0006-291x(88)81282-8. [DOI] [PubMed] [Google Scholar]
  8. Carmichael D. F., Morin J. E., Dixon J. E. Purification and characterization of a thiol:protein disulfide oxidoreductase from bovine liver. J Biol Chem. 1977 Oct 25;252(20):7163–7167. [PubMed] [Google Scholar]
  9. Chambers I., Frampton J., Goldfarb P., Affara N., McBain W., Harrison P. R. The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the 'termination' codon, TGA. EMBO J. 1986 Jun;5(6):1221–1227. doi: 10.1002/j.1460-2075.1986.tb04350.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cheng S. Y., Gong Q. H., Parkison C., Robinson E. A., Appella E., Merlino G. T., Pastan I. The nucleotide sequence of a human cellular thyroid hormone binding protein present in endoplasmic reticulum. J Biol Chem. 1987 Aug 15;262(23):11221–11227. [PubMed] [Google Scholar]
  11. Cheng S. Y., Hasumura S., Willingham M. C., Pastan I. Purification and characterization of a membrane-associated 3,3',5-triiodo-L-thyronine binding protein from a human carcinoma cell line. Proc Natl Acad Sci U S A. 1986 Feb;83(4):947–951. doi: 10.1073/pnas.83.4.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Conversion of thyroxine into tri-iodothyronine by rat liver homogenate. Biochem J. 1975 Sep;150(3):489–493. doi: 10.1042/bj1500489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kaplan M. M., McCann U. D., Yaskoski K. A., Larsen P. R., Leonard J. L. Anatomical distribution of phenolic and tyrosyl ring iodothyronine deiodinases in the nervous system of normal and hypothyroid rats. Endocrinology. 1981 Aug;109(2):397–402. doi: 10.1210/endo-109-2-397. [DOI] [PubMed] [Google Scholar]
  14. Kaplan M. M. The role of thyroid hormone deiodination in the regulation of hypothalamo-pituitary function. Neuroendocrinology. 1984 Mar;38(3):254–260. doi: 10.1159/000123900. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Nikodem V. M., Cheng S. Y., Rall J. E. Affinity labeling of rat liver thyroid hormone nuclear receptor. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7064–7068. doi: 10.1073/pnas.77.12.7064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. O'Brian J. T., Bybee D. E., Burman K. D., Osburne R. C., Ksiazek M. R., Wartofsky L., Georges L. P. Thyroid hormone homeostasis in states of relative caloric deprivation. Metabolism. 1980 Aug;29(8):721–727. doi: 10.1016/0026-0495(80)90193-6. [DOI] [PubMed] [Google Scholar]
  18. Portnay G. I., O'Brian J. T., Bush J., Vagenakis A. G., Azizi F., Arky R. A., Ingbar S. H., Braverman L. E. The effect of starvation on the concentration and binding of thyroxine and triiodothyronine in serum and on the response to TRH. J Clin Endocrinol Metab. 1974 Jul;39(1):191–194. doi: 10.1210/jcem-39-1-191. [DOI] [PubMed] [Google Scholar]
  19. Schoenmakers C. H., Pigmans I. G., Hawkins H. C., Freedman R. B., Visser T. J. Rat liver type I iodothyronine deiodinase is not identical to protein disulfide isomerase. Biochem Biophys Res Commun. 1989 Jul 31;162(2):857–868. doi: 10.1016/0006-291x(89)92389-9. [DOI] [PubMed] [Google Scholar]
  20. Smallridge R. C., Glass A. R., Wartofsky L., Latham K. R., Burman K. D. Investigations into the etiology of elevated serum T3 levels in protein-malnourished rats. Metabolism. 1982 Jun;31(6):538–542. doi: 10.1016/0026-0495(82)90091-9. [DOI] [PubMed] [Google Scholar]
  21. Sunde R. A. Molecular biology of selenoproteins. Annu Rev Nutr. 1990;10:451–474. doi: 10.1146/annurev.nu.10.070190.002315. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES