Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Mar 15;274(Pt 3):787–792. doi: 10.1042/bj2740787

The relationship between insulin binding, insulin activation of insulin-receptor tyrosine kinase, and insulin stimulation of glucose uptake in isolated rat adipocytes. Effects of isoprenaline.

H H Klein 1, S Matthaei 1, M Drenkhan 1, W Ries 1, P C Scriba 1
PMCID: PMC1150195  PMID: 2012605

Abstract

We have studied the relationship between insulin activation of insulin-receptor kinase and insulin stimulation of glucose uptake in isolated rat adipocytes. Glucose uptake was half-maximally or maximally stimulated, respectively, when only 4% or 14% of the maximal kinase activity had been reached. To investigate this relationship also under conditions where the insulin effect on activation of receptor kinase was decreased, the adipocytes were exposed to 10 microM-isoprenaline alone or with 5 micrograms of adenosine deaminase/ml. An approx. 30% (isoprenaline) or approx. 50% (isoprenaline + adenosine deaminase) decrease in the insulin effect on receptor kinase activity was found at insulin concentrations between 0.4 and 20 ng/ml, and this could not be explained by decreased insulin binding. The decreased insulin-effect on kinase activity was closely correlated with a loss of insulin-sensitivity of glucose uptake. Moreover, our data indicate that the relation between receptor kinase activity and glucose uptake (expressed as percentage of maximal uptake) remained unchanged. The following conclusions were drawn. (1) If activation of receptor kinase stimulates glucose uptake, only 14% of the maximal kinase activity is sufficient for maximal stimulation. (2) Isoprenaline decreases the coupling efficiency between insulin binding and receptor-kinase activation, this being accompanied by a corresponding decrease in sensitivity of glucose uptake. (3) Our data indicate that the signalling for glucose uptake is closely related to receptor-kinase activity, even when the coupling efficiency between insulin binding and kinase activation is altered. They thus support the hypothesis that receptor-kinase activity reflects the signal which originates from the receptor and which is transduced to the glucose-transport system.

Full text

PDF
787

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arsenis G., Livingston J. N. Isoproterenol reduces insulin stimulation of hexose uptake by rat adipocytes via a postinsulin binding alteration. Endocrinology. 1986 Jul;119(1):50–57. doi: 10.1210/endo-119-1-50. [DOI] [PubMed] [Google Scholar]
  2. Caro J. F., Sinha M. K., Raju S. M., Ittoop O., Pories W. J., Flickinger E. G., Meelheim D., Dohm G. L. Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. J Clin Invest. 1987 May;79(5):1330–1337. doi: 10.1172/JCI112958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chou C. K., Dull T. J., Russell D. S., Gherzi R., Lebwohl D., Ullrich A., Rosen O. M. Human insulin receptors mutated at the ATP-binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin. J Biol Chem. 1987 Feb 5;262(4):1842–1847. [PubMed] [Google Scholar]
  4. Chung F. Z., Weber H. W., Appleman M. M. Extensive but reversible depletion of ATP via adenylate cyclase in rat adipocytes. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1614–1617. doi: 10.1073/pnas.82.6.1614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ciaraldi T. P., Olefsky J. M. Kinetic relationships between insulin receptor binding and effects on glucose transport in isolated rat adipocytes. Biochemistry. 1982 Jul 6;21(14):3475–3480. doi: 10.1021/bi00257a034. [DOI] [PubMed] [Google Scholar]
  6. Freidenberg G. R., Henry R. R., Klein H. H., Reichart D. R., Olefsky J. M. Decreased kinase activity of insulin receptors from adipocytes of non-insulin-dependent diabetic subjects. J Clin Invest. 1987 Jan;79(1):240–250. doi: 10.1172/JCI112789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Freidenberg G. R., Klein H. H., Cordera R., Olefsky J. M. Insulin receptor kinase activity in rat liver. Regulation by fasting and high carbohydrate feeding. J Biol Chem. 1985 Oct 15;260(23):12444–12453. [PubMed] [Google Scholar]
  8. Green A. Catecholamines inhibit insulin-stimulated glucose transport in adipocytes, in the presence of adenosine deaminase. FEBS Lett. 1983 Feb 21;152(2):261–264. doi: 10.1016/0014-5793(83)80392-5. [DOI] [PubMed] [Google Scholar]
  9. Häring H., Kirsch D., Obermaier B., Ermel B., Machicao F. Decreased tyrosine kinase activity of insulin receptor isolated from rat adipocytes rendered insulin-resistant by catecholamine treatment in vitro. Biochem J. 1986 Feb 15;234(1):59–66. doi: 10.1042/bj2340059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. James D. E., Hiken J., Lawrence J. C., Jr Isoproterenol stimulates phosphorylation of the insulin-regulatable glucose transporter in rat adipocytes. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8368–8372. doi: 10.1073/pnas.86.21.8368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Joost H. G., Weber T. M., Cushman S. W., Simpson I. A. Activity and phosphorylation state of glucose transporters in plasma membranes from insulin-, isoproterenol-, and phorbol ester-treated rat adipose cells. J Biol Chem. 1987 Aug 15;262(23):11261–11267. [PubMed] [Google Scholar]
  12. Kadowaki T., Kasuga M., Akanuma Y., Ezaki O., Takaku F. Decreased autophosphorylation of the insulin receptor-kinase in streptozotocin-diabetic rats. J Biol Chem. 1984 Nov 25;259(22):14208–14216. [PubMed] [Google Scholar]
  13. Kahn C. R., White M. F. The insulin receptor and the molecular mechanism of insulin action. J Clin Invest. 1988 Oct;82(4):1151–1156. doi: 10.1172/JCI113711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kasuga M., Zick Y., Blith D. L., Karlsson F. A., Häring H. U., Kahn C. R. Insulin stimulation of phosphorylation of the beta subunit of the insulin receptor. Formation of both phosphoserine and phosphotyrosine. J Biol Chem. 1982 Sep 10;257(17):9891–9894. [PubMed] [Google Scholar]
  15. Klein H. H., Ciaraldi T. P., Freidenberg G. R., Olefsky J. M. Adenosine modulates insulin activation of insulin receptor kinase in intact rat adipocytes. Endocrinology. 1987 Jun;120(6):2339–2345. doi: 10.1210/endo-120-6-2339. [DOI] [PubMed] [Google Scholar]
  16. Klein H. H., Freidenberg G. R., Kladde M., Olefsky J. M. Insulin activation of insulin receptor tyrosine kinase in intact rat adipocytes. An in vitro system to measure histone kinase activity of insulin receptors activated in vivo. J Biol Chem. 1986 Apr 5;261(10):4691–4697. [PubMed] [Google Scholar]
  17. Klein H. H., Freidenberg G. R., Matthaei S., Olefsky J. M. Insulin receptor kinase following internalization in isolated rat adipocytes. J Biol Chem. 1987 Aug 5;262(22):10557–10564. [PubMed] [Google Scholar]
  18. Kuroda M., Honnor R. C., Cushman S. W., Londos C., Simpson I. A. Regulation of insulin-stimulated glucose transport in the isolated rat adipocyte. cAMP-independent effects of lipolytic and antilipolytic agents. J Biol Chem. 1987 Jan 5;262(1):245–253. [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Le Marchand-Brustel Y., Grémeaux T., Ballotti R., Van Obberghen E. Insulin receptor tyrosine kinase is defective in skeletal muscle of insulin-resistant obese mice. Nature. 1985 Jun 20;315(6021):676–679. doi: 10.1038/315676a0. [DOI] [PubMed] [Google Scholar]
  21. Lönnroth P., Davies J. I., Lönnroth I., Smith U. The interaction between the adenylate cyclase system and insulin-stimulated glucose transport. Evidence for the importance of both cyclic-AMP-dependent and -independent mechanisms. Biochem J. 1987 May 1;243(3):789–795. doi: 10.1042/bj2430789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mandarino L., Tsalikian E., Bartold S., Marsh H., Carney A., Buerklin E., Tutwiler G., Haymond M., Handwerger B., Rizza R. Mechanism of hyperglycemia and response to treatment with an inhibitor of fatty acid oxidation in a patient with insulin resistance due to antiinsulin receptor antibodies. J Clin Endocrinol Metab. 1984 Oct;59(4):658–664. doi: 10.1210/jcem-59-4-658. [DOI] [PubMed] [Google Scholar]
  23. Morgan D. O., Roth R. A. Acute insulin action requires insulin receptor kinase activity: introduction of an inhibitory monoclonal antibody into mammalian cells blocks the rapid effects of insulin. Proc Natl Acad Sci U S A. 1987 Jan;84(1):41–45. doi: 10.1073/pnas.84.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Obermaier-Kusser B., White M. F., Pongratz D. E., Su Z., Ermel B., Muhlbacher C., Haring H. U. A defective intramolecular autoactivation cascade may cause the reduced kinase activity of the skeletal muscle insulin receptor from patients with non-insulin-dependent diabetes mellitus. J Biol Chem. 1989 Jun 5;264(16):9497–9504. [PubMed] [Google Scholar]
  25. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  26. Rosen O. M., Herrera R., Olowe Y., Petruzzelli L. M., Cobb M. H. Phosphorylation activates the insulin receptor tyrosine protein kinase. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3237–3240. doi: 10.1073/pnas.80.11.3237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roth R. A., Beaudoin J. Phosphorylation of purified insulin receptor by cAMP kinase. Diabetes. 1987 Jan;36(1):123–126. doi: 10.2337/diab.36.1.123. [DOI] [PubMed] [Google Scholar]
  28. Smith U., Kuroda M., Simpson I. A. Counter-regulation of insulin-stimulated glucose transport by catecholamines in the isolated rat adipose cell. J Biol Chem. 1984 Jul 25;259(14):8758–8763. [PubMed] [Google Scholar]
  29. Stadtmauer L., Rosen O. M. Increasing the cAMP content of IM-9 cells alters the phosphorylation state and protein kinase activity of the insulin receptor. J Biol Chem. 1986 Mar 5;261(7):3402–3407. [PubMed] [Google Scholar]
  30. Tanti J. F., Grémeaux T., Rochet N., Van Obberghen E., Le Marchand-Brustel Y. Effect of cyclic AMP-dependent protein kinase on insulin receptor tyrosine kinase activity. Biochem J. 1987 Jul 1;245(1):19–26. doi: 10.1042/bj2450019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ullrich A., Bell J. R., Chen E. Y., Herrera R., Petruzzelli L. M., Dull T. J., Gray A., Coussens L., Liao Y. C., Tsubokawa M. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. 1985 Feb 28-Mar 6Nature. 313(6005):756–761. doi: 10.1038/313756a0. [DOI] [PubMed] [Google Scholar]
  32. Whitesell R. R., Gliemann J. Kinetic parameters of transport of 3-O-methylglucose and glucose in adipocytes. J Biol Chem. 1979 Jun 25;254(12):5276–5283. [PubMed] [Google Scholar]
  33. Yu K. T., Czech M. P. Tyrosine phosphorylation of the insulin receptor beta subunit activates the receptor-associated tyrosine kinase activity. J Biol Chem. 1984 Apr 25;259(8):5277–5286. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES