Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Feb 1;273(Pt 3):645–650. doi: 10.1042/bj2730645

Purification and properties of an aryl beta-xylosidase from a cellulolytic extreme thermophile expressed in Escherichia coli.

R C Hudson 1, L R Schofield 1, T Coolbear 1, R M Daniel 1, H W Morgan 1
PMCID: PMC1150217  PMID: 1847618

Abstract

An aryl beta-xylosidase was purified to homogeneity from an Escherichia coli strain containing a recombinant plasmid carrying a beta-xylosidase (EC 3.2.1.37) gene from the extremely thermophilic anaerobic bacterium isolate Tp8T6.3.3.1 ('Caldocellum saccharolyticum'). It has a pI of 4.3 and shows optimal activity at pH 5.7. The enzyme is highly specific, acting on o- and p-nitrophenyl beta-D-xylopyranosides and minimally on p-nitrophenyl alpha-L-arabinopyranoside. It does not act on xylobiose. The Km for p-nitrophenyl beta-D-xylopyranoside at the optimum pH for activity is 10 mM, and at pH 7.0 is 6.7 mM. Xylose is a competitive inhibitor with Ki 40 mM. Thermal inactivation follows first-order kinetics at 65 and 70 degrees C with t1/2 values of 4.85 h and 40 min respectively. The t1/2 at 70 degrees C is increased 3-fold and 4-fold by the addition of 0.5 mg of BSA/ml and 2 mM-dithiothreitol respectively.

Full text

PDF
645

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergquist P. L., Love D. R., Croft J. E., Streiff M. B., Daniel R. M., Morgan W. H. Genetics and potential biotechnological applications of thermophilic and extremely thermophilic micro-organisms. Biotechnol Genet Eng Rev. 1987;5:199–244. doi: 10.1080/02648725.1987.10647838. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Deleyn F., Claeyssens M., De Bruyne C. K. beta-D-xylosidase from Penicillium wortmanni. Methods Enzymol. 1982;83:639–644. doi: 10.1016/0076-6879(82)83063-2. [DOI] [PubMed] [Google Scholar]
  4. Kersters-Hilderson H., Loontiens F. G., Claeyssens M., De Bruyne C. K. Partial purification and properties of an induced beta-D-xylosidase of Bacillus pumilus 12. Eur J Biochem. 1969 Jan;7(3):434–441. doi: 10.1111/j.1432-1033.1969.tb19628.x. [DOI] [PubMed] [Google Scholar]
  5. Kersters-Hilderson H., Van Doorslaer E., Lippens M., De Bruyne C. K. The pH dependence and group modification of beta-D-xylosidase from Bacillus pumilus: evidence for sulfhydryl and histidyl groups. Arch Biochem Biophys. 1984 Oct;234(1):61–72. doi: 10.1016/0003-9861(84)90324-2. [DOI] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Lee S. F., Forsberg C. W. Isolation and Some Properties of a beta-d-Xylosidase from Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol. 1987 Apr;53(4):651–654. doi: 10.1128/aem.53.4.651-654.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lever M. Colorimetric and fluorometric carbohydrate determination with p-hydroxybenzoic acid hydrazide. Biochem Med. 1973 Apr;7(2):274–281. doi: 10.1016/0006-2944(73)90083-5. [DOI] [PubMed] [Google Scholar]
  9. Lüthi E., Love D. R., McAnulty J., Wallace C., Caughey P. A., Saul D., Bergquist P. L. Cloning, sequence analysis, and expression of genes encoding xylan-degrading enzymes from the thermophile "Caldocellum saccharolyticum". Appl Environ Microbiol. 1990 Apr;56(4):1017–1024. doi: 10.1128/aem.56.4.1017-1024.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Panbangred W., Kawaguchi O., Tomita T., Shinmyo A., Okada H. Isolation of two beta-xylosidase genes of Bacillus pumilus and comparison of their gene products. Eur J Biochem. 1984 Jan 16;138(2):267–273. doi: 10.1111/j.1432-1033.1984.tb07911.x. [DOI] [PubMed] [Google Scholar]
  11. Patchett M. L., Daniel R. M., Morgan H. W. Purification and properties of a stable beta-glucosidase from an extremely thermophilic anaerobic bacterium. Biochem J. 1987 May 1;243(3):779–787. doi: 10.1042/bj2430779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rapp P., Wagner F. Production and Properties of Xylan-Degrading Enzymes from Cellulomonas uda. Appl Environ Microbiol. 1986 Apr;51(4):746–752. doi: 10.1128/aem.51.4.746-752.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sissons C. H., Sharrock K. R., Daniel R. M., Morgan H. W. Isolation of cellulolytic anaerobic extreme thermophiles from new zealand thermal sites. Appl Environ Microbiol. 1987 Apr;53(4):832–838. doi: 10.1128/aem.53.4.832-838.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stalker D. M., McBride K. E., Malyj L. D. Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science. 1988 Oct 21;242(4877):419–423. doi: 10.1126/science.242.4877.419. [DOI] [PubMed] [Google Scholar]
  15. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES