Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Oct 24:2024.10.15.618539. [Version 2] doi: 10.1101/2024.10.15.618539

IOP-induced blood-retinal barrier compromise contributes to RGC death in glaucoma

Chi Zhang, Marina Simón, Haeyn Lim, Nicholas G Tolman, Logan Horbal, Felicia A Juarez, Aakriti Bhandari, Christa Montgomery, Simon W M John
PMCID: PMC11507889  PMID: 39463998

Abstract

The integrity of the blood-retinal barrier (BRB) has been largely unexplored in glaucoma. We reveal that elevated intraocular pressure (IOP) partially compromises the BRB in two human-relevant inherited mouse models of glaucoma (DBA/2J and Lmx1bV265D). Experimentally increasing IOP in mouse eyes further confirms this. Notably, the compromise induces subtle leakage, happening without bleeding or detected endothelial cell junction disruption, and it precedes neurodegeneration. Leakage occurs from peripheral veins in the retinal ganglion cell layer with a concomitant loss of the transcytosis inhibitor MFSD2A. Importantly, stabilizing β-catenin in retinal endothelial cells prevents both vascular leakage and neurodegeneration in the DBA/2J model. The occurrence of leakage in all 3 high IOP models indicates that BRB compromise may be a common, yet overlooked, mechanism in glaucoma. These findings suggest that IOP-induced BRB compromise plays a critical role in glaucoma, offering a new therapeutic target.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES