Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Jun 15;276(Pt 3):643–648. doi: 10.1042/bj2760643

Rapid inactivation of plant aconitase by hydrogen peroxide.

F Verniquet 1, J Gaillard 1, M Neuburger 1, R Douce 1
PMCID: PMC1151053  PMID: 1648348

Abstract

Preincubation of potato (Solanum tuberosum) tuber mitochondria with 300 microM-H2O2 for 10 min nearly stopped the State 3 rate of citrate oxidation. Addition of isocitrate resulted in resumption of O2 uptake. The State 3 rates of succinate, external NADH and 2-oxoglutarate oxidation were unaffected by H2O2 over the dose range 50-500 microM. Preincubation of mitochondria with 300 microM-H2O2 for 5 min unmasked in the matrix space a paramagnetic signal with a peak at a g value of approx. 2.03. Aconitase was purified over 135-fold to a specific activity of 32 mumol/min per mg (with isocitrate as substrate) from the matrix of potato tuber mitochondria. The native enzyme was composed of a single polypeptide chain (molecular mass 90 kDa). Incubation of purified aconitase with small amounts of H2O2 caused the build up of a paramagnetic 3Fe cluster with a low-field maximum of g = 2.03 leading to a progressive inhibition of aconitase activity. The results show that aconitase present in the matrix space was the major intramitochondrial target for inactivation by H2O2.

Full text

PDF
643

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beinert H., Ackrell B. A., Kearney E. B., Singer T. P. Iron-sulfur components of succinate dehydrogenase: stoichiometry and kinetic behavior in activated preparations. Eur J Biochem. 1975 May;54(1):185–194. doi: 10.1111/j.1432-1033.1975.tb04128.x. [DOI] [PubMed] [Google Scholar]
  2. Beinert H., Thomson A. J. Three-iron clusters in iron-sulfur proteins. Arch Biochem Biophys. 1983 Apr 15;222(2):333–361. doi: 10.1016/0003-9861(83)90531-3. [DOI] [PubMed] [Google Scholar]
  3. Brouquisse R., Gaillard J., Douce R. Electron paramagnetic resonance characterization of membrane bound iron-sulfur clusters and aconitase in plant mitochondria. Plant Physiol. 1986 May;81(1):247–252. doi: 10.1104/pp.81.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brouquisse R., Nishimura M., Gaillard J., Douce R. Characterization of a cytosolic aconitase in higher plant cells. Plant Physiol. 1987 Aug;84(4):1402–1407. doi: 10.1104/pp.84.4.1402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davies K. J. Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem. 1987 Jul 15;262(20):9895–9901. [PubMed] [Google Scholar]
  6. Journet E. P., Douce R. Mechanisms of citrate oxidation by percoll-purified mitochondria from potato tuber. Plant Physiol. 1983 Jul;72(3):802–808. doi: 10.1104/pp.72.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kennedy M. C., Emptage M. H., Dreyer J. L., Beinert H. The role of iron in the activation-inactivation of aconitase. J Biol Chem. 1983 Sep 25;258(18):11098–11105. [PubMed] [Google Scholar]
  8. Kennedy M. C., Werst M., Telser J., Emptage M. H., Beinert H., Hoffman B. M. Mode of substrate carboxyl binding to the [4Fe-4S]+ cluster of reduced aconitase as studied by 17O and 13C electron-nuclear double resonance spectroscopy. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8854–8858. doi: 10.1073/pnas.84.24.8854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kent T. A., Dreyer J. L., Kennedy M. C., Huynh B. H., Emptage M. H., Beinert H., Münck E. Mössbauer studies of beef heart aconitase: evidence for facile interconversions of iron-sulfur clusters. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1096–1100. doi: 10.1073/pnas.79.4.1096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Ohnishi T., Ingledew W. J., Shiraishi S. Resolution and functional characterization of two mitochondrial iron-sulphur centres of the 'high-potential iron-sulphur protein' type. Biochem J. 1976 Jan 1;153(1):39–48. doi: 10.1042/bj1530039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Puppo A., Halliwell B. Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological Fenton reagent? Biochem J. 1988 Jan 1;249(1):185–190. doi: 10.1042/bj2490185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Robbins A. H., Stout C. D. The structure of aconitase. Proteins. 1989;5(4):289–312. doi: 10.1002/prot.340050406. [DOI] [PubMed] [Google Scholar]
  14. Rose I. A., O'Connell E. L. Mechanism of aconitase action. I. The hydrogen transfer reaction. J Biol Chem. 1967 Apr 25;242(8):1870–1879. [PubMed] [Google Scholar]
  15. Ruzicka F. J., Beinert H. A mitochondrial iron protein with properties of a high-potential iron-sulfur protein. Biochem Biophys Res Commun. 1974 Jun 4;58(3):556–563. doi: 10.1016/s0006-291x(74)80456-0. [DOI] [PubMed] [Google Scholar]
  16. Rydén L., Ofverstedt L. G., Beinert H., Emptage M. H., Kennedy M. C. Molecular weight of beef heart aconitase and stoichiometry of the components of its iron-sulfur cluster. J Biol Chem. 1984 Mar 10;259(5):3141–3144. [PubMed] [Google Scholar]
  17. Zhang Y., Marcillat O., Giulivi C., Ernster L., Davies K. J. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem. 1990 Sep 25;265(27):16330–16336. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES