Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Jun 15;276(Pt 3):655–659. doi: 10.1042/bj2760655

Structural requirements of position A alpha-157 in fibrinogen for the fibrin-induced rate enhancement of the activation of plasminogen by tissue-type plasminogen activator.

J G Schielen 1, H P Adams 1, M Voskuilen 1, G J Tesser 1, W Nieuwenhuizen 1
PMCID: PMC1151055  PMID: 1905925

Abstract

The sequence fibrinogen-A alpha-(148-160) can mimic part of the fibrin-induced rate enhancement of the activation of plasminogen by tissue-type plasminogen activator. Previously we have reported that the lysine residue at position A alpha-157 is crucial. During our further investigations on A alpha-157 we found that lysine at position A alpha-157 may be replaced by glutamic acid. This unexpected finding prompted us to re-investigate the requirements of this position. We prepared analogues of A alpha-(148-160) in which the lysine residue at position A alpha-157 was replaced by lysine derivatives (acetyl-lysine, benzyloxycarbonyl-lysine and methanesulphonylethyloxycarbonyl-lysine), acidic residues (aspartic acid and glutamic acid), basic residues (arginine and ornithine), polar residues (glutamine and methanesulphonylethyloxycarbonylornithine), apolar residues (alanine, valine, norleucine and glutamic acid 4-nitrobenzyl ester) and glycine. These analogues were tested for their stimulatory activity. When aspartic acid, glutamic acid 4-nitrobenzyl ester or norleucine is present at position A alpha-157 in A alpha-(148-160) virtually all stimulatory capacity is lost. With valine at position A alpha-157 the stimulatory activity is marginal. None of the other replacements at position A alpha-157 caused loss of rate-enhancing properties. From these results we conclude that for the rate-enhancing effect of A alpha-(148-160) the side chain of the amino acid residue at position A alpha-157 must fulfill certain requirements: there must be one (as in alanine) or no (as in glycine) carbon atom in the side chain, or at least two carbon atoms and a polar group (charged or uncharged) to which a rather bulky group (such as the benzyloxycarbonyl group) or a polar group (such as the methanesulphonylethyloxycarbonyl group) may be attached. The highest activity [even higher than native A alpha-(148-160)] was obtained with ornithine, methanesulphonylethyloxycarbonylornithine or methanesulphonylethyloxycarbonyl-lysine at position A alpha-157.

Full text

PDF
655

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. A., Pepper D. S. Isolation and properties of human vascular plasminogen activator. Thromb Haemost. 1981 Feb 23;45(1):43–50. [PubMed] [Google Scholar]
  2. Christensen U. The AH-site of plasminogen and two C-terminal fragments. A weak lysine-binding site preferring ligands not carrying a free carboxylate function. Biochem J. 1984 Oct 15;223(2):413–421. doi: 10.1042/bj2230413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Collen D. On the regulation and control of fibrinolysis. Edward Kowalski Memorial Lecture. Thromb Haemost. 1980 Jun 18;43(2):77–89. [PubMed] [Google Scholar]
  4. Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095–1096. doi: 10.1126/science.170.3962.1095. [DOI] [PubMed] [Google Scholar]
  5. Doolittle R. F., Goldbaum D. M., Doolittle L. R. Designation of sequences involved in the "coiled-coil" interdomainal connections in fibrinogen: constructions of an atomic scale model. J Mol Biol. 1978 Apr 5;120(2):311–325. doi: 10.1016/0022-2836(78)90070-0. [DOI] [PubMed] [Google Scholar]
  6. Hoylaerts M., Rijken D. C., Lijnen H. R., Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem. 1982 Mar 25;257(6):2912–2919. [PubMed] [Google Scholar]
  7. Kaiser E., Colescott R. L., Bossinger C. D., Cook P. I. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem. 1970 Apr;34(2):595–598. doi: 10.1016/0003-2697(70)90146-6. [DOI] [PubMed] [Google Scholar]
  8. Laudano A. P., Doolittle R. F. Influence of calcium ion on the binding of fibrin amino terminal peptides to fibrinogen. Science. 1981 Apr 24;212(4493):457–459. doi: 10.1126/science.7209542. [DOI] [PubMed] [Google Scholar]
  9. Nieuwenhuizen W., Verheijen J. H., Vermond A., Chang G. T. Plasminogen activation by tissue activator is accelerated in the presence of fibrin(ogen) cyanogen bromide fragment FCB-2. Biochim Biophys Acta. 1983 Feb 22;755(3):531–533. doi: 10.1016/0304-4165(83)90261-1. [DOI] [PubMed] [Google Scholar]
  10. Nieuwenhuizen W., Vermond A., Voskuilen M., Traas D. W., Verheijen J. H. Identification of a site in fibrin(ogen) which is involved in the acceleration of plasminogen activation by tissue-type plasminogen activator. Biochim Biophys Acta. 1983 Oct 17;748(1):86–92. doi: 10.1016/0167-4838(83)90030-4. [DOI] [PubMed] [Google Scholar]
  11. Norrman B., Wallén P., Rånby M. Fibrinolysis mediated by tissue plasminogen activator. Disclosure of a kinetic transition. Eur J Biochem. 1985 May 15;149(1):193–200. doi: 10.1111/j.1432-1033.1985.tb08911.x. [DOI] [PubMed] [Google Scholar]
  12. Radcliffe R. A critical role of lysine residues in the stimulation of tissue plasminogen activator by denatured proteins and fibrin clots. Biochim Biophys Acta. 1983 Mar 30;743(3):422–430. doi: 10.1016/0167-4838(83)90401-6. [DOI] [PubMed] [Google Scholar]
  13. Rijken D. C., Wijngaards G., Zaal-de Jong M., Welbergen J. Purification and partial characterization of plasminogen activator from human uterine tissue. Biochim Biophys Acta. 1979 Sep 29;580(1):140–153. doi: 10.1016/0005-2795(79)90205-8. [DOI] [PubMed] [Google Scholar]
  14. Schielen W. J., Voskuilen M., Tesser G. I., Nieuwenhuizen W. The sequence A alpha-(148-160) in fibrin, but not in fibrinogen, is accessible to monoclonal antibodies. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8951–8954. doi: 10.1073/pnas.86.22.8951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Suenson E., Lützen O., Thorsen S. Initial plasmin-degradation of fibrin as the basis of a positive feed-back mechanism in fibrinolysis. Eur J Biochem. 1984 May 2;140(3):513–522. doi: 10.1111/j.1432-1033.1984.tb08132.x. [DOI] [PubMed] [Google Scholar]
  16. Verheijen J. H., Nieuwenhuizen W., Traas D. W., Chang G. T., Hoegee E. Differences in effects of fibrin(ogen) fragments on the activation of 1-glu-plasminogen and 442-val-plasminogen by tissue-type plasminogen activator. Thromb Res. 1983 Oct 1;32(1):87–92. doi: 10.1016/0049-3848(83)90157-3. [DOI] [PubMed] [Google Scholar]
  17. Verheijen J. H., Nieuwenhuizen W., Wijngaards G. Activation of plasminogen by tissue activator is increased specifically in the presence of certain soluble fibrin(ogen) fragments. Thromb Res. 1982 Aug 15;27(4):377–385. doi: 10.1016/0049-3848(82)90055-x. [DOI] [PubMed] [Google Scholar]
  18. Voskuilen M., Vermond A., Veeneman G. H., van Boom J. H., Klasen E. A., Zegers N. D., Nieuwenhuizen W. Fibrinogen lysine residue A alpha 157 plays a crucial role in the fibrin-induced acceleration of plasminogen activation, catalyzed by tissue-type plasminogen activator. J Biol Chem. 1987 May 5;262(13):5944–5946. [PubMed] [Google Scholar]
  19. Wang S. S. p-alkoxybenzyl alcohol resin and p-alkoxybenzyloxycarbonylhydrazide resin for solid phase synthesis of protected peptide fragments. J Am Chem Soc. 1973 Feb 21;95(4):1328–1333. doi: 10.1021/ja00785a602. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES