Abstract
The irreversible inhibition of the rat glutathione S-transferase (GST) isoenzyme 1-1 by a series of halogenated 1,4-benzoquinones and their GSH conjugates was studied quantitatively by analysing the time course of enzyme inactivation. With increasing numbers of chlorine substituents, the rate of inhibition greatly increased. Incorporation of a GSH moiety in all cases increased the rate of inactivation compared with the non-substituted compound, and this was due to the increased affinity of the inhibitor for the active site. The ratio between the rates of inhibition for a given quinone with and without GSH substituent was largest for the three dichlorobenzoquinones, with the 2,6-isomer showing a 41-fold increase in rate of inhibition upon conjugation with GSH. The time courses of inhibition could be fitted either to a bi-exponential function (for the GSH conjugates and the higher chlorinated quinones) or to a mono-exponential function (all other quinones). It is concluded that the second component describes the affinity part of the reaction. GST 1-1 possesses two cysteine residues, with modification of one of these, probably located in the vicinity of the active site, having a major impact on the enzyme activity. Compounds with affinity towards the active site preferentially react with this residue. Non-specific quinones react equally with both cysteine residues. This was confirmed by the observation that complete inactivation of GST 1-1 by 2,5-dichlorobenzoquinone was achieved only after modification of two residues, whereas the corresponding GSH conjugate already completely inhibited the enzyme after modification of one residue.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Awasthi Y. C., Bhatnagar A., Singh S. V. Evidence for the involvement of histidine at the active site of glutathione S-transferase psi from human liver. Biochem Biophys Res Commun. 1987 Mar 30;143(3):965–970. doi: 10.1016/0006-291x(87)90345-7. [DOI] [PubMed] [Google Scholar]
- Bogaards J. J., van Ommen B., van Bladeren P. J. An improved method for the separation and quantification of glutathione S-transferase subunits in rat tissue using high-performance liquid chromatography. J Chromatogr. 1989 Jul 19;474(2):435–440. doi: 10.1016/s0021-9673(01)93940-8. [DOI] [PubMed] [Google Scholar]
- Brunmark A., Cadenas E. Reductive addition of glutathione to p-benzoquinone, 2-hydroxy-p-benzoquinone, and p-benzoquinone epoxides. Effect of the hydroxy- and glutathionyl substituents on p-benzohydroquinone autoxidation. Chem Biol Interact. 1988;68(3-4):273–298. doi: 10.1016/0009-2797(88)90021-x. [DOI] [PubMed] [Google Scholar]
- Carne T., Tipping E., Ketterer B. The binding and catalytic activities of forms of ligandin after modification of its thiol groups. Biochem J. 1979 Feb 1;177(2):433–439. doi: 10.1042/bj1770433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guthenberg C., Mannervik B. Purification of glutathione S-transferases from rat lung by affinity chromatography. Evidence for an enzyme form absent in rat liver. Biochem Biophys Res Commun. 1979 Feb 28;86(4):1304–1310. doi: 10.1016/0006-291x(79)90258-4. [DOI] [PubMed] [Google Scholar]
- Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
- Lai H. C., Li N., Weiss M. J., Reddy C. C., Tu C. P. The nucleotide sequence of a rat liver glutathione S-transferase subunit cDNA clone. J Biol Chem. 1984 May 10;259(9):5536–5542. [PubMed] [Google Scholar]
- Ludewig G., Dogra S., Glatt H. Genotoxicity of 1,4-benzoquinone and 1,4-naphthoquinone in relation to effects on glutathione and NAD(P)H levels in V79 cells. Environ Health Perspect. 1989 Jul;82:223–228. doi: 10.1289/ehp.8982223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mannervik B., Alin P., Guthenberg C., Jensson H., Tahir M. K., Warholm M., Jörnvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202–7206. doi: 10.1073/pnas.82.21.7202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mannervik B., Danielson U. H. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337. doi: 10.3109/10409238809088226. [DOI] [PubMed] [Google Scholar]
- Mannervik B. The isoenzymes of glutathione transferase. Adv Enzymol Relat Areas Mol Biol. 1985;57:357–417. doi: 10.1002/9780470123034.ch5. [DOI] [PubMed] [Google Scholar]
- Monks T. J., Highet R. J., Lau S. S. 2-Bromo-(diglutathion-S-yl)hydroquinone nephrotoxicity: physiological, biochemical, and electrochemical determinants. Mol Pharmacol. 1988 Oct;34(4):492–500. [PubMed] [Google Scholar]
- Monks T. J., Lau S. S., Highet R. J., Gillette J. R. Glutathione conjugates of 2-bromohydroquinone are nephrotoxic. Drug Metab Dispos. 1985 Sep-Oct;13(5):553–559. [PubMed] [Google Scholar]
- Morrow C. S., Cowan K. H. Glutathione S-transferases and drug resistance. Cancer Cells. 1990 Jan;2(1):15–22. [PubMed] [Google Scholar]
- Pickett C. B., Telakowski-Hopkins C. A., Ding G. J., Argenbright L., Lu A. Y. Rat liver glutathione S-transferases. Complete nucleotide sequence of a glutathione S-transferase mRNA and the regulation of the Ya, Yb, and Yc mRNAs by 3-methylcholanthrene and phenobarbital. J Biol Chem. 1984 Apr 25;259(8):5182–5188. [PubMed] [Google Scholar]
- Söderström M., Mannervik B., Orning L., Hammarström S. Leukotriene C4 formation catalyzed by three distinct forms of human cytosolic glutathione transferase. Biochem Biophys Res Commun. 1985 Apr 16;128(1):265–270. doi: 10.1016/0006-291x(85)91673-0. [DOI] [PubMed] [Google Scholar]
- Ujihara M., Tsuchida S., Satoh K., Sato K., Urade Y. Biochemical and immunological demonstration of prostaglandin D2, E2, and F2 alpha formation from prostaglandin H2 by various rat glutathione S-transferase isozymes. Arch Biochem Biophys. 1988 Aug 1;264(2):428–437. doi: 10.1016/0003-9861(88)90308-6. [DOI] [PubMed] [Google Scholar]
- Vos R. M., Van Ommen B., Hoekstein M. S., De Goede J. H., Van Bladeren P. J. Irreversible inhibition of rat hepatic glutathione S-transferase isoenzymes by a series of structurally related quinones. Chem Biol Interact. 1989;71(4):381–392. doi: 10.1016/0009-2797(89)90112-9. [DOI] [PubMed] [Google Scholar]
- van Ommen B., Adang A. E., Brader L., Posthumus M. A., Müller F., van Bladeren P. J. The microsomal metabolism of hexachlorobenzene. Origin of the covalent binding to protein. Biochem Pharmacol. 1986 Oct 1;35(19):3233–3238. doi: 10.1016/0006-2952(86)90417-x. [DOI] [PubMed] [Google Scholar]
- van Ommen B., Ploemen J. H., Ruven H. J., Vos R. M., Bogaards J. J., van Berkel W. J., van Bladeren P. J. Studies on the active site of rat glutathione S-transferase isoenzyme 4-4. Chemical modification by tetrachloro-1,4-benzoquinone and its glutathione conjugate. Eur J Biochem. 1989 May 1;181(2):423–429. doi: 10.1111/j.1432-1033.1989.tb14742.x. [DOI] [PubMed] [Google Scholar]
- van Ommen B., Voncken J. W., Müller F., van Bladeren P. J. The oxidation of tetrachloro-1,4-hydroquinone by microsomes and purified cytochrome P-450b. Implications for covalent binding to protein and involvement of reactive oxygen species. Chem Biol Interact. 1988;65(3):247–259. doi: 10.1016/0009-2797(88)90110-x. [DOI] [PubMed] [Google Scholar]
- van Ommen B., den Besten C., Rutten A. L., Ploemen J. H., Vos R. M., Müller F., van Bladeren P. J. Active site-directed irreversible inhibition of glutathione S-transferases by the glutathione conjugate of tetrachloro-1,4-benzoquinone. J Biol Chem. 1988 Sep 15;263(26):12939–12942. [PubMed] [Google Scholar]