Abstract
Labelling of human lactotransferrin with fluorescein 5'-isothiocyanate (FITC) in an equimolar ratio inhibits the binding of the protein to phytohaemagglutinin-activated human peripheral-blood lymphocytes. Therefore it can be assumed that FITC reacts at, or near, the receptor-binding site. Three FITC-labelled peptides have been purified from a tryptic digest of the FITC-labelled lactotransferrin. The determination of their amino acid sequence and their localization on the primary structure of the protein permitted the identification of two FITC-accessible areas in the N-terminal lobe and one in the C-terminal lobe. In fact, only 10% of the total FITC was conjugated to one lysine residue (Lys579) of the C-terminal lobe, whereas most (80%) of the FITC was conjugated to three close lysine residues [Lys263 (65% of total fluorescence), Lys280 and Lys282 (15% of total fluorescence)] located in beta-turn structures, of the N-terminal domain I of human lactotransferrin. The results obtained show that the receptor-binding site should be located in the vicinity of the FITC-accessible Lys263, Lys280 and Lys282, and corroborate our preliminary results reporting the involvement of the N-terminal domain I in the binding of human lactotransferrin to mitogen-stimulated lymphocytes [Rochard, Legrand, Mazurier, Montreuil & Spik (1989) FEBS Lett. 255, 201-204]. In any case, FITC labelling is not suitable for studying the binding of lactotransferrin to activated lymphocytes and its use may lead to erroneous interpretations of cell binding experiments.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson B. F., Baker H. M., Norris G. E., Rice D. W., Baker E. N. Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution. J Mol Biol. 1989 Oct 20;209(4):711–734. doi: 10.1016/0022-2836(89)90602-5. [DOI] [PubMed] [Google Scholar]
- BISERTE G., HAVEZ R., CUVELIER R. LES GLYCOPROT'EIDES DES S'ECR'ETIONS BRONCHIQUES. Expos Annu Biochim Med. 1963;24:85–120. [PubMed] [Google Scholar]
- Bailey S., Evans R. W., Garratt R. C., Gorinsky B., Hasnain S., Horsburgh C., Jhoti H., Lindley P. F., Mydin A., Sarra R. Molecular structure of serum transferrin at 3.3-A resolution. Biochemistry. 1988 Jul 26;27(15):5804–5812. doi: 10.1021/bi00415a061. [DOI] [PubMed] [Google Scholar]
- CRESTFIELD A. M., MOORE S., STEIN W. H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem. 1963 Feb;238:622–627. [PubMed] [Google Scholar]
- Cox T. M., Mazurier J., Spik G., Montreuil J., Peters T. J. Iron binding proteins and influx of iron across the duodenal brush border. Evidence for specific lactotransferrin receptors in the human intestine. Biochim Biophys Acta. 1979 Nov 15;588(1):120–128. doi: 10.1016/0304-4165(79)90377-5. [DOI] [PubMed] [Google Scholar]
- Goavec M., Mazurier J., Montreuil J., Spik G. Rôle des glycannes dans la fixation de la sérotransferrine et de la lactotransferrine humaines sur les macrophages alvéolaires humains. C R Acad Sci III. 1985;301(16):689–694. [PubMed] [Google Scholar]
- Hu W. L., Mazurier J., Montreuil J., Spik G. Isolation and partial characterization of a lactotransferrin receptor from mouse intestinal brush border. Biochemistry. 1990 Jan 16;29(2):535–541. doi: 10.1021/bi00454a030. [DOI] [PubMed] [Google Scholar]
- Hu W. L., Mazurier J., Sawatzki G., Montreuil J., Spik G. Lactotransferrin receptor of mouse small-intestinal brush border. Binding characteristics of membrane-bound and triton X-100-solubilized forms. Biochem J. 1988 Jan 15;249(2):435–441. doi: 10.1042/bj2490435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jobbágy A., Király K. Chemical characterization of fluorescein isothiocyanate-protein conjugates. Biochim Biophys Acta. 1966 Jul 27;124(1):166–175. doi: 10.1016/0304-4165(66)90325-4. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Legrand D., Mazurier J., Aubert J. P., Loucheux-Lefebvre M. H., Montreuil J., Spik G. Evidence for interactions between the 30 kDa N- and 50 kDa C-terminal tryptic fragments of human lactotransferrin. Biochem J. 1986 Jun 15;236(3):839–844. doi: 10.1042/bj2360839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Legrand D., Mazurier J., Metz-Boutigue M. H., Jolles J., Jolles P., Montreuil J., Spik G. Characterization and localization of an iron-binding 18-kDa glycopeptide isolated from the N-terminal half of human lactotransferrin. Biochim Biophys Acta. 1984 May 31;787(1):90–96. doi: 10.1016/0167-4838(84)90111-0. [DOI] [PubMed] [Google Scholar]
- MONTREUIL J., MULLET S. [Isolation of lactosiderophilin from human milk]. C R Hebd Seances Acad Sci. 1960 Feb 29;250:1736–1737. [PubMed] [Google Scholar]
- MONTREUIL J., TONNELAT J., MULLET S. [Preparation and properties of lactosiderophilin (lactotransferrin) of human milk]. Biochim Biophys Acta. 1960 Dec 18;45:413–421. doi: 10.1016/0006-3002(60)91478-5. [DOI] [PubMed] [Google Scholar]
- MacGillivray R. T., Mendez E., Shewale J. G., Sinha S. K., Lineback-Zins J., Brew K. The primary structure of human serum transferrin. The structures of seven cyanogen bromide fragments and the assembly of the complete structure. J Biol Chem. 1983 Mar 25;258(6):3543–3553. [PubMed] [Google Scholar]
- Masson P. L., Heremans J. F., Schonne E. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med. 1969 Sep 1;130(3):643–658. doi: 10.1084/jem.130.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazurier J., Legrand D., Hu W. L., Montreuil J., Spik G. Expression of human lactotransferrin receptors in phytohemagglutinin-stimulated human peripheral blood lymphocytes. Isolation of the receptors by antiligand-affinity chromatography. Eur J Biochem. 1989 Feb 1;179(2):481–487. doi: 10.1111/j.1432-1033.1989.tb14578.x. [DOI] [PubMed] [Google Scholar]
- Mazurier J., Lhoste J. M., Montreuil J., Spik G. Comparative study of the iron-binding properties of human transferrins. II. Electron paramagnetic resonance of mixed metal complexes of human lactotransferrin. Biochim Biophys Acta. 1983 May 30;745(1):44–49. doi: 10.1016/0167-4838(83)90168-1. [DOI] [PubMed] [Google Scholar]
- Mazurier J., Montreuil J., Spik G. Visualization of lactotransferrin brush-border receptors by ligand-blotting. Biochim Biophys Acta. 1985 Dec 19;821(3):453–460. doi: 10.1016/0005-2736(85)90050-1. [DOI] [PubMed] [Google Scholar]
- Metz-Boutigue M. H., Jollès J., Mazurier J., Schoentgen F., Legrand D., Spik G., Montreuil J., Jollès P. Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. Eur J Biochem. 1984 Dec 17;145(3):659–676. doi: 10.1111/j.1432-1033.1984.tb08607.x. [DOI] [PubMed] [Google Scholar]
- Rochard E., Legrand D., Mazurier J., Montreuil J., Spik G. The N-terminal domain I of human lactotransferrin binds specifically to phytohemagglutinin-stimulated peripheral blood human lymphocyte receptors. FEBS Lett. 1989 Sep 11;255(1):201–204. doi: 10.1016/0014-5793(89)81091-9. [DOI] [PubMed] [Google Scholar]
- Spik G., Strecker G., Fournet B., Bouquelet S., Montreuil J., Dorland L., van Halbeek H., Vliegenthart J. F. Primary structure of the glycans from human lactotransferrin. Eur J Biochem. 1982 Jan;121(2):413–419. doi: 10.1111/j.1432-1033.1982.tb05803.x. [DOI] [PubMed] [Google Scholar]
- Yang F., Lum J. B., McGill J. R., Moore C. M., Naylor S. L., van Bragt P. H., Baldwin W. D., Bowman B. H. Human transferrin: cDNA characterization and chromosomal localization. Proc Natl Acad Sci U S A. 1984 May;81(9):2752–2756. doi: 10.1073/pnas.81.9.2752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zaman N., Varsányi M., Heilmeyer L. M., Jr, Sotiroudis T. G., Johnson C. M., Crabb J. W. Reaction of fluorescein isothiocyanate with an ATP-binding site on the phosphorylase kinase alpha subunit. Eur J Biochem. 1989 Jul 1;182(3):577–584. doi: 10.1111/j.1432-1033.1989.tb14866.x. [DOI] [PubMed] [Google Scholar]
- van Renswoude J., Bridges K. R., Harford J. B., Klausner R. D. Receptor-mediated endocytosis of transferrin and the uptake of fe in K562 cells: identification of a nonlysosomal acidic compartment. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6186–6190. doi: 10.1073/pnas.79.20.6186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Snick J. L., Markowetz B., Masson P. L. The ingestion and digestion of human lactoferrin by mouse peritoneal macrophages and the transfer of its iron into ferritin. J Exp Med. 1977 Sep 1;146(3):817–827. doi: 10.1084/jem.146.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
