Abstract
Attack by hydroxyl radicals (.OH) upon salicylate (2-hydroxybenzoate) leads to formation of both 2,3-dihydroxybenzoate (2,3-DHB) and 2,5-dihydroxybenzoate (gentisate, 2,5-DHB). It has been suggested that formation of 2,3-DHB from salicylate is a means of monitoring .OH formation. Production of 2,3-DHB and 2,5-DHB by liver microsomal fractions and isoforms of cytochrome P-450 was investigated. Liver microsomes prepared from variously treated rats and rabbits catalysed the formation of 2,5-DHB but not 2,3-DHB. Formation of 2,5-DHB was inhibited by CO, metyrapone and SKF-525A, but not by the .OH scavengers mannitol and formate or by the iron chelator desferrioxamine. Purified P-450s IIE1, IIB4 or IA2 from rabbit liver microsomes, reconstituted together with NADPH-cytochrome P-450 reductase, led to formation of equal amounts of 2,3-DHB and 2,5-DHB in reactions that were almost completely inhibited by mannitol or formate. Addition of Fe3+/EDTA either to microsomes or to membranes containing reconstituted P-450 caused formation of approximately equal amounts of 2,3-DHB and 2,5-DHB, consistent with an .OH-dependent attack on salicylate. The data indicate that the microsomal P-450 system catalyses hydroxylation of salicylate to 2,5-DHB, but not formation of 2,3-DHB. Hence measurement of 2,3-DHB might provide a means of monitoring .OH formation. Care must be taken in studies of substrate hydroxylation by microsomes or reconstituted P-450 systems to avoid artefacts resulting from .OH generation.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abramson S., Korchak H., Ludewig R., Edelson H., Haines K., Levin R. I., Herman R., Rider L., Kimmel S., Weissmann G. Modes of action of aspirin-like drugs. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7227–7231. doi: 10.1073/pnas.82.21.7227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aruoma O. I., Bomford A., Polson R. J., Halliwell B. Nontransferrin-bound iron in plasma from hemochromatosis patients: effect of phlebotomy therapy. Blood. 1988 Oct;72(4):1416–1419. [PubMed] [Google Scholar]
- Aruoma O. I., Halliwell B. The iron-binding and hydroxyl radical scavenging action of anti-inflammatory drugs. Xenobiotica. 1988 Apr;18(4):459–470. doi: 10.3109/00498258809041682. [DOI] [PubMed] [Google Scholar]
- Chand P., Clausen J. Effects of phenobarbital and sodium salicylate on cytochrome P-450 mixed function oxygenase and glutathione S-transferase activities in rat brain. Chem Biol Interact. 1982 Jul 1;40(3):357–363. doi: 10.1016/0009-2797(82)90158-2. [DOI] [PubMed] [Google Scholar]
- Davison C. Salicylate metabolism in man. Ann N Y Acad Sci. 1971 Jul 6;179:249–268. doi: 10.1111/j.1749-6632.1971.tb46905.x. [DOI] [PubMed] [Google Scholar]
- Eliasson E., Johansson I., Ingelman-Sundberg M. Ligand-dependent maintenance of ethanol-inducible cytochrome P-450 in primary rat hepatocyte cell cultures. Biochem Biophys Res Commun. 1988 Jan 15;150(1):436–443. doi: 10.1016/0006-291x(88)90539-6. [DOI] [PubMed] [Google Scholar]
- Eynard A. R., Galli G., Tremoli E., Maderna P., Magni F., Paoletti R. Aspirin inhibits platelet 12-hydroxy-eicosatetraenoic acid formation. J Lab Clin Med. 1986 Jan;107(1):73–78. [PubMed] [Google Scholar]
- Floyd R. A., Watson J. J., Wong P. K. Sensitive assay of hydroxyl free radical formation utilizing high pressure liquid chromatography with electrochemical detection of phenol and salicylate hydroxylation products. J Biochem Biophys Methods. 1984 Dec;10(3-4):221–235. doi: 10.1016/0165-022x(84)90042-3. [DOI] [PubMed] [Google Scholar]
- Gonzalez F. J. The molecular biology of cytochrome P450s. Pharmacol Rev. 1988 Dec;40(4):243–288. [PubMed] [Google Scholar]
- Grootveld M., Bell J. D., Halliwell B., Aruoma O. I., Bomford A., Sadler P. J. Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. Characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy. J Biol Chem. 1989 Mar 15;264(8):4417–4422. [PubMed] [Google Scholar]
- Grootveld M., Halliwell B. 2,3-Dihydroxybenzoic acid is a product of human aspirin metabolism. Biochem Pharmacol. 1988 Jan 15;37(2):271–280. doi: 10.1016/0006-2952(88)90729-0. [DOI] [PubMed] [Google Scholar]
- Grootveld M., Halliwell B. An aromatic hydroxylation assay for hydroxyl radicals utilizing high-performance liquid chromatography (HPLC). Use to investigate the effect of EDTA on the Fenton reaction. Free Radic Res Commun. 1986;1(4):243–250. doi: 10.3109/10715768609051634. [DOI] [PubMed] [Google Scholar]
- Grootveld M., Halliwell B. Aromatic hydroxylation as a potential measure of hydroxyl-radical formation in vivo. Identification of hydroxylated derivatives of salicylate in human body fluids. Biochem J. 1986 Jul 15;237(2):499–504. doi: 10.1042/bj2370499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halliwell B., Grootveld M. The measurement of free radical reactions in humans. Some thoughts for future experimentation. FEBS Lett. 1987 Mar 9;213(1):9–14. doi: 10.1016/0014-5793(87)81455-2. [DOI] [PubMed] [Google Scholar]
- Halliwell B., Gutteridge J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-b. [DOI] [PubMed] [Google Scholar]
- Halliwell B., Hoult J. R., Blake D. R. Oxidants, inflammation, and anti-inflammatory drugs. FASEB J. 1988 Oct;2(13):2867–2873. doi: 10.1096/fasebj.2.13.2844616. [DOI] [PubMed] [Google Scholar]
- Halliwell B. Protection against tissue damage in vivo by desferrioxamine: what is its mechanism of action? Free Radic Biol Med. 1989;7(6):645–651. doi: 10.1016/0891-5849(89)90145-7. [DOI] [PubMed] [Google Scholar]
- Hiller K. O., Hodd P. L., Willson R. L. Antiinflammatory drugs: protection of a bacterial virus as an in vitro biological measure of free radical activity. Chem Biol Interact. 1983 Dec;47(3):293–305. doi: 10.1016/0009-2797(83)90165-5. [DOI] [PubMed] [Google Scholar]
- Ingelman-Sundberg M., Glaumann H. Incorporation of purified components of the rabbit liver microsomal hydroxylase system into phospholipid vesicles. Biochim Biophys Acta. 1980 Jul;599(2):417–435. doi: 10.1016/0005-2736(80)90188-1. [DOI] [PubMed] [Google Scholar]
- Ingelman-Sundberg M., Johansson I. Mechanisms of hydroxyl radical formation and ethanol oxidation by ethanol-inducible and other forms of rabbit liver microsomal cytochromes P-450. J Biol Chem. 1984 May 25;259(10):6447–6458. [PubMed] [Google Scholar]
- Johansson I., Ekström G., Scholte B., Puzycki D., Jörnvall H., Ingelman-Sundberg M. Ethanol-, fasting-, and acetone-inducible cytochromes P-450 in rat liver: regulation and characteristics of enzymes belonging to the IIB and IIE gene subfamilies. Biochemistry. 1988 Mar 22;27(6):1925–1934. doi: 10.1021/bi00406a019. [DOI] [PubMed] [Google Scholar]
- Kato S., Kawase T., Alderman J., Inatomi N., Lieber C. S. Role of xanthine oxidase in ethanol-induced lipid peroxidation in rats. Gastroenterology. 1990 Jan;98(1):203–210. doi: 10.1016/0016-5085(90)91311-s. [DOI] [PubMed] [Google Scholar]
- Reidl U. Determination of acetylsalicylic acid and metabolites in biological fluids by high-performance liquid chromatography. J Chromatogr. 1983 Feb 11;272(2):325–331. doi: 10.1016/s0378-4347(00)86135-6. [DOI] [PubMed] [Google Scholar]
- Rumble R. H., Roberts M. S., Wanwimolruk S. Determination of aspirin and its major metabolites in plasma by high-performance liquid chromatography without solvent extraction. J Chromatogr. 1981 Sep 11;225(1):252–260. doi: 10.1016/s0378-4347(00)80270-4. [DOI] [PubMed] [Google Scholar]
- Vane J., Botting R. Inflammation and the mechanism of action of anti-inflammatory drugs. FASEB J. 1987 Aug;1(2):89–96. [PubMed] [Google Scholar]