Abstract
The glycosaminoglycans (GAGs) heparin, heparan sulphate and chondroitin 6-sulphate stimulate the rate of urokinase activation of human plasminogen. Kinetic analysis of plasminogen activation demonstrates that heparin, heparan sulphate and chondroitin 6-sulphate increased the catalytic rate (Kcat) by 5.3-, 3.5- and 2.5-fold respectively. These stimulatory GAGs had no effect on the affinity of urokinase for plasminogen, since the Km of the reaction is unaltered by the GAGs. The GAGs may enhance the rate of plasminogen activation through an interaction with the catalytic domain of the urokinase, with dissociation constants of approx. 30 nM. Additionally, the lipoproteins, lipoprotein (a) [Lp(a)] and low-density lipoprotein (LDL) inhibit heparin and heparan sulphate stimulation of plasmin formation. Lp(a) is a competitive inhibitor (Kic 20 nM) and LDL is a mixed inhibitor of heparin-enhanced urokinase-mediated plasminogen activation (Kic 24 nM and Kiu 60 nM). These inhibition constants correlate with physiological concentrations of these lipoproteins. These data suggest that these GAGs and lipoproteins may play an important role in vivo in regulating urokinase-mediated plasmin formation.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrade-Gordon P., Strickland S. Interaction of heparin with plasminogen activators and plasminogen: effects on the activation of plasminogen. Biochemistry. 1986 Jul 15;25(14):4033–4040. doi: 10.1021/bi00362a007. [DOI] [PubMed] [Google Scholar]
- Astedt B., Holmberg L. Immunological identity of urokinase and ovarian carcinoma plasminogen activator released in tissue culture. Nature. 1976 Jun 17;261(5561):595–597. doi: 10.1038/261595a0. [DOI] [PubMed] [Google Scholar]
- Ax R. L., Ryan R. J. The porcine ovarian follicle. IV. Mucopolysaccharides at different stages of development. Biol Reprod. 1979 Jun;20(5):1123–1132. doi: 10.1095/biolreprod20.5.1123. [DOI] [PubMed] [Google Scholar]
- Beers W. H. Follicular plasminogen and plasminogen activator and the effect of plasmin on ovarian follicle wall. Cell. 1975 Nov;6(3):379–386. doi: 10.1016/0092-8674(75)90187-7. [DOI] [PubMed] [Google Scholar]
- Bouziges F., Simon-Assmann P., Leberquier C., Marescaux J., Bellocq J. P., Haffen K., Kedinger M. Changes in glycosaminoglycan synthesis and in heparan sulfate deposition in human colorectal adenocarcinomas. Int J Cancer. 1990 Aug 15;46(2):189–197. doi: 10.1002/ijc.2910460208. [DOI] [PubMed] [Google Scholar]
- Brockway W. J., Castellino F. J. Measurement of the binding of antifibrinolytic amino acids to various plasminogens. Arch Biochem Biophys. 1972 Jul;151(1):194–199. doi: 10.1016/0003-9861(72)90488-2. [DOI] [PubMed] [Google Scholar]
- Camiolo S. M., Markus G., Evers J. L., Hobika G. H., DePasquale J. L., Beckley S., Grimaldi J. P. Plasminogen activator content of neoplastic and benign human prostate tissues; fibrin augmentation of an activator activity. Int J Cancer. 1981 Feb 15;27(2):191–198. doi: 10.1002/ijc.2910270211. [DOI] [PubMed] [Google Scholar]
- Canipari R., Strickland S. Plasminogen activator in the rat ovary. Production and gonadotropin regulation of the enzyme in granulosa and thecal cells. J Biol Chem. 1985 Apr 25;260(8):5121–5125. [PubMed] [Google Scholar]
- Collen D. On the regulation and control of fibrinolysis. Edward Kowalski Memorial Lecture. Thromb Haemost. 1980 Jun 18;43(2):77–89. [PubMed] [Google Scholar]
- DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahlen G. H., Guyton J. R., Attar M., Farmer J. A., Kautz J. A., Gotto A. M., Jr Association of levels of lipoprotein Lp(a), plasma lipids, and other lipoproteins with coronary artery disease documented by angiography. Circulation. 1986 Oct;74(4):758–765. doi: 10.1161/01.cir.74.4.758. [DOI] [PubMed] [Google Scholar]
- Danø K., Andreasen P. A., Grøndahl-Hansen J., Kristensen P., Nielsen L. S., Skriver L. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res. 1985;44:139–266. doi: 10.1016/s0065-230x(08)60028-7. [DOI] [PubMed] [Google Scholar]
- Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095–1096. doi: 10.1126/science.170.3962.1095. [DOI] [PubMed] [Google Scholar]
- ERLANGER B. F., KOKOWSKY N., COHEN W. The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys. 1961 Nov;95:271–278. doi: 10.1016/0003-9861(61)90145-x. [DOI] [PubMed] [Google Scholar]
- Edelberg J. M., Gonzalez-Gronow M., Pizzo S. V. Lipoprotein(a) inhibition of plasminogen activation by tissue-type plasminogen activator. Thromb Res. 1990 Jan 1;57(1):155–162. doi: 10.1016/0049-3848(90)90203-o. [DOI] [PubMed] [Google Scholar]
- Edelberg J. M., Pizzo S. V. Kinetic analysis of the effects of heparin and lipoproteins on tissue plasminogen activator mediated plasminogen activation. Biochemistry. 1990 Jun 26;29(25):5906–5911. doi: 10.1021/bi00477a004. [DOI] [PubMed] [Google Scholar]
- Evers J. L., Patel J., Madeja J. M., Schneider S. L., Hobika G. H., Camiolo S. M., Markus G. Plasminogen activator activity and composition in human breast cancer. Cancer Res. 1982 Jan;42(1):219–226. [PubMed] [Google Scholar]
- Fears R. Kinetic studies on the effect of heparin and fibrin on plasminogen activators. Biochem J. 1988 Jan 1;249(1):77–81. doi: 10.1042/bj2490077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujiwara S., Wiedemann H., Timpl R., Lustig A., Engel J. Structure and interactions of heparan sulfate proteoglycans from a mouse tumor basement membrane. Eur J Biochem. 1984 Aug 15;143(1):145–157. doi: 10.1111/j.1432-1033.1984.tb08353.x. [DOI] [PubMed] [Google Scholar]
- Gebauer H., Lindner H. R., Amsterdam A. Synthesis of heparin-like glycosaminoglycans in rat ovarian slices,. Biol Reprod. 1978 Apr;18(3):350–358. doi: 10.1095/biolreprod18.3.350. [DOI] [PubMed] [Google Scholar]
- Gonzalez-Gronow M., Robbins K. C. In vitro biosynthesis of plasminogen in a cell-free system directed by mRNA fractions isolated from monkey liver. Biochemistry. 1984 Jan 17;23(2):190–196. doi: 10.1021/bi00297a003. [DOI] [PubMed] [Google Scholar]
- Grimek H. J., Ax R. L. Chromatographic comparison of chondroitin-containing proteoglycan from small and large bovine ovarian follicles. Biochem Biophys Res Commun. 1982 Feb 26;104(4):1401–1406. doi: 10.1016/0006-291x(82)91405-x. [DOI] [PubMed] [Google Scholar]
- Hajjar K. A., Gavish D., Breslow J. L., Nachman R. L. Lipoprotein(a) modulation of endothelial cell surface fibrinolysis and its potential role in atherosclerosis. Nature. 1989 May 25;339(6222):303–305. doi: 10.1038/339303a0. [DOI] [PubMed] [Google Scholar]
- Hajjar K. A., Hamel N. M., Harpel P. C., Nachman R. L. Binding of tissue plasminogen activator to cultured human endothelial cells. J Clin Invest. 1987 Dec;80(6):1712–1719. doi: 10.1172/JCI113262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harpel P. C., Gordon B. R., Parker T. S. Plasmin catalyzes binding of lipoprotein (a) to immobilized fibrinogen and fibrin. Proc Natl Acad Sci U S A. 1989 May;86(10):3847–3851. doi: 10.1073/pnas.86.10.3847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hassell J. R., Leyshon W. C., Ledbetter S. R., Tyree B., Suzuki S., Kato M., Kimata K., Kleinman H. K. Isolation of two forms of basement membrane proteoglycans. J Biol Chem. 1985 Jul 5;260(13):8098–8105. [PubMed] [Google Scholar]
- Homandberg G. A., Wai T. Insertion of fibrin peptides into urokinase enhances fibrin affinity. Thromb Res. 1990 May 15;58(4):403–412. doi: 10.1016/0049-3848(90)90211-t. [DOI] [PubMed] [Google Scholar]
- Hoylaerts M., Rijken D. C., Lijnen H. R., Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem. 1982 Mar 25;257(6):2912–2919. [PubMed] [Google Scholar]
- Kjaeldgaard A., Larsson B., Astedt B. Release of both urokinase and tissue plasminogen activator from veins in vitro. Thromb Res. 1986 Dec 15;44(6):729–737. doi: 10.1016/0049-3848(86)90019-8. [DOI] [PubMed] [Google Scholar]
- Lucas M. A., Straight D. L., Fretto L. J., McKee P. A. The effects of fibrinogen and its cleavage products on the kinetics of plasminogen activation by urokinase and subsequent plasmin activity. J Biol Chem. 1983 Oct 25;258(20):12171–12177. [PubMed] [Google Scholar]
- Marcum J. A., Atha D. H., Fritze L. M., Nawroth P., Stern D., Rosenberg R. D. Cloned bovine aortic endothelial cells synthesize anticoagulantly active heparan sulfate proteoglycan. J Biol Chem. 1986 Jun 5;261(16):7507–7517. [PubMed] [Google Scholar]
- Marcum J. A., Rosenberg R. D. Anticoagulantly active heparin-like molecules from vascular tissue. Biochemistry. 1984 Apr 10;23(8):1730–1737. doi: 10.1021/bi00303a023. [DOI] [PubMed] [Google Scholar]
- Marcum J. A., Rosenberg R. D. Heparinlike molecules with anticoagulant activity are synthesized by cultured endothelial cells. Biochem Biophys Res Commun. 1985 Jan 16;126(1):365–372. doi: 10.1016/0006-291x(85)90615-1. [DOI] [PubMed] [Google Scholar]
- Markus G., Takita H., Camiolo S. M., Corasanti J. G., Evers J. L., Hobika G. H. Content and characterization of plasminogen activators in human lung tumors and normal lung tissue. Cancer Res. 1980 Mar;40(3):841–848. [PubMed] [Google Scholar]
- Markwardt F., Klöcking H. P. Heparin-induced release of plasminogen activator. Haemostasis. 1977;6(6):370–374. doi: 10.1159/000214203. [DOI] [PubMed] [Google Scholar]
- Marossy K. Interaction of the chymotrypsin- and elastase-like enzymes of the human granulocyte with glycosaminoglycans. Biochim Biophys Acta. 1981 Jun 15;659(2):351–361. doi: 10.1016/0005-2744(81)90061-9. [DOI] [PubMed] [Google Scholar]
- Miles L. A., Fless G. M., Levin E. G., Scanu A. M., Plow E. F. A potential basis for the thrombotic risks associated with lipoprotein(a). Nature. 1989 May 25;339(6222):301–303. doi: 10.1038/339301a0. [DOI] [PubMed] [Google Scholar]
- Miles L. A., Plow E. F. Receptor mediated binding of the fibrinolytic components, plasminogen and urokinase, to peripheral blood cells. Thromb Haemost. 1987 Oct 28;58(3):936–942. [PubMed] [Google Scholar]
- Mueller P. L., Schreiber J. R., Lucky A. W., Schulman J. D., Rodbard D., Ross G. T. Follicle-stimulating hormone stimulates ovarian synthesis of proteoglycans in the estrogen-stimulated hypophysectomized immature female rat. Endocrinology. 1978 Mar;102(3):824–831. doi: 10.1210/endo-102-3-824. [DOI] [PubMed] [Google Scholar]
- Murai A., Miyahara T., Fujimoto N., Matsuda M., Kameyama M. Lp(a) lipoprotein as a risk factor for coronary heart disease and cerebral infarction. Atherosclerosis. 1986 Feb;59(2):199–204. doi: 10.1016/0021-9150(86)90048-1. [DOI] [PubMed] [Google Scholar]
- Nieuwenhuizen W., Verheijen J. H., Vermond A., Chang G. T. Plasminogen activation by tissue activator is accelerated in the presence of fibrin(ogen) cyanogen bromide fragment FCB-2. Biochim Biophys Acta. 1983 Feb 22;755(3):531–533. doi: 10.1016/0304-4165(83)90261-1. [DOI] [PubMed] [Google Scholar]
- Pâques E. P., Stöhr H. A., Heimburger N. Study on the mechanism of action of heparin and related substances on the fibrinolytic system: relationship between plasminogen activators and heparin. Thromb Res. 1986 Jun 15;42(6):797–807. doi: 10.1016/0049-3848(86)90116-7. [DOI] [PubMed] [Google Scholar]
- Reich R., Thompson E. W., Iwamoto Y., Martin G. R., Deason J. R., Fuller G. C., Miskin R. Effects of inhibitors of plasminogen activator, serine proteinases, and collagenase IV on the invasion of basement membranes by metastatic cells. Cancer Res. 1988 Jun 15;48(12):3307–3312. [PubMed] [Google Scholar]
- Rhoads G. G., Dahlen G., Berg K., Morton N. E., Dannenberg A. L. Lp(a) lipoprotein as a risk factor for myocardial infarction. JAMA. 1986 Nov 14;256(18):2540–2544. [PubMed] [Google Scholar]
- Rydzewski A., Takada Y., Takada A. Stimulation of plasmin catalyzed conversion of single-chain to two-chain urokinase-type plasminogen activator by sulfated polysaccharides. Thromb Haemost. 1989 Sep 29;62(2):752–755. [PubMed] [Google Scholar]
- Rånby M. Studies on the kinetics of plasminogen activation by tissue plasminogen activator. Biochim Biophys Acta. 1982 Jun 24;704(3):461–469. doi: 10.1016/0167-4838(82)90068-1. [DOI] [PubMed] [Google Scholar]
- Silverstein R. L., Nachman R. L., Leung L. L., Harpel P. C. Activation of immobilized plasminogen by tissue activator. Multimolecular complex formation. J Biol Chem. 1985 Aug 25;260(18):10346–10352. [PubMed] [Google Scholar]
- Soeda S., Kakiki M., Shimeno H., Nagamatsu A. Localization of the binding sites of porcine tissue-type plasminogen activator and plasminogen to heparin. Biochim Biophys Acta. 1987 Dec 18;916(3):279–287. doi: 10.1016/0167-4838(87)90171-3. [DOI] [PubMed] [Google Scholar]
- Soeda S., Ohki H., Shimeno H., Nagamatsu A. Further characterization of the binding of plasminogen to heparin: evidence for the involvement of lysine residues. Biochim Biophys Acta. 1989 Nov 9;999(1):29–35. doi: 10.1016/0167-4838(89)90025-3. [DOI] [PubMed] [Google Scholar]
- Sprengers E. D., Kluft C. Plasminogen activator inhibitors. Blood. 1987 Feb;69(2):381–387. [PubMed] [Google Scholar]
- Stack S., Gonzalez-Gronow M., Pizzo S. V. Regulation of plasminogen activation by components of the extracellular matrix. Biochemistry. 1990 May 22;29(20):4966–4970. doi: 10.1021/bi00472a029. [DOI] [PubMed] [Google Scholar]
- Stein P. L., van Zonneveld A. J., Pannekoek H., Strickland S. Structural domains of human tissue-type plasminogen activator that confer stimulation by heparin. J Biol Chem. 1989 Sep 15;264(26):15441–15444. [PubMed] [Google Scholar]
- Strickland S., Beers W. H. Studies on the role of plasminogen activator in ovulation. In vitro response of granulosa cells to gonadotropins, cyclic nucleotides, and prostaglandins. J Biol Chem. 1976 Sep 25;251(18):5694–5702. [PubMed] [Google Scholar]
- Strickland S., Reich E., Sherman M. I. Plasminogen activator in early embryogenesis: enzyme production by trophoblast and parietal endoderm. Cell. 1976 Oct;9(2):231–240. doi: 10.1016/0092-8674(76)90114-8. [DOI] [PubMed] [Google Scholar]
- Urano T., Sator de Serrano V., Chibber B. A., Castellino F. J. The control of the urokinase-catalyzed activation of human glutamic acid 1-plasminogen by positive and negative effectors. J Biol Chem. 1987 Nov 25;262(33):15959–15964. [PubMed] [Google Scholar]
- Watahiki Y., Takada Y., Takada A. Kinetic analyses of the activation of Glu-plasminogen by urokinase in the presence of fibrin, fibrinogen or its degradation products. Thromb Res. 1987 Apr 1;46(1):9–18. doi: 10.1016/0049-3848(87)90202-7. [DOI] [PubMed] [Google Scholar]
- Wiman B., Collen D. On the kinetics of the reaction between human antiplasmin and plasmin. Eur J Biochem. 1978 Mar 15;84(2):573–578. doi: 10.1111/j.1432-1033.1978.tb12200.x. [DOI] [PubMed] [Google Scholar]
- Woods A., Couchman J. R., Hök M. Heparan sulfate proteoglycans of rat embryo fibroblasts. A hydrophobic form may link cytoskeleton and matrix components. J Biol Chem. 1985 Sep 5;260(19):10872–10879. [PubMed] [Google Scholar]
- Yanagishita M., Rodbard D., Hascall V. C. Isolation and characterization of proteoglycans from porcine ovarian follicular fluid. J Biol Chem. 1979 Feb 10;254(3):911–920. [PubMed] [Google Scholar]
- de Serrano V. S., Urano T., Gaffney P. J., Castellino F. J. Influence of various structural domains of fibrinogen and fibrin on the potentiation of plasminogen activation by recombinant tissue plasminogen activator. J Protein Chem. 1989 Feb;8(1):61–77. doi: 10.1007/BF01025079. [DOI] [PubMed] [Google Scholar]
