Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Jun 15;276(Pt 3):793–799. doi: 10.1042/bj2760793

Site specificity in the interactions of synapsin 1 with tubulin.

A F Bennett 1, N V Hayes 1, A J Baines 1
PMCID: PMC1151074  PMID: 1905928

Abstract

Synapsin 1 is one of a family of phosphoproteins located on small synaptic vesicles (SSV) in the presynaptic terminal, and probably plays a critical role in the process of neuronal exocytosis by providing regulated linkages between SSV and the cytoskeleton. Two forms of synapsin 1 are produced from a single gene by differential mRNA splicing: 1a, 706 amino acid residues, and 1b, 670 residues. Synapsin 1 has two structural domains, a globular N-terminal head domain and an elongated tail domain. Electron microscopy of nerve terminals in situ and reconstitution studies in vitro indicates that synapsin 1 can interact with microtubules, microfilaments and brain spectrin. In vitro, synapsin 1 can bundle microtubules. This could either occur by synapsin 1 being at least bivalent for microtubules, or by univalent synapsin 1 molecules aggregating to form complexes that are more than univalent. To resolve this question, we have taken the approach of preparing defined fragments of synapsin 1 from each structural domain and analysing them for tubulin-binding activity. Our results show that there are tubulin-binding sites in both head and tail domains. We conclude that synapsin 1 monomers should be able to cross-link microtubules.

Full text

PDF
793

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aubert-Foucher E., Font B. Limited proteolysis of synapsin I. Identification of the region of the molecule responsible for its association with microtubules. Biochemistry. 1990 Jun 5;29(22):5351–5357. doi: 10.1021/bi00474a021. [DOI] [PubMed] [Google Scholar]
  2. Baines A. J. A role for repeated 18-amino-acid stretches in the sequence of synapsin I in tubulin binding? Biochem J. 1989 May 15;260(1):311–312. doi: 10.1042/bj2600311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baines A. J., Bennett V. Synapsin I is a microtubule-bundling protein. Nature. 1986 Jan 9;319(6049):145–147. doi: 10.1038/319145a0. [DOI] [PubMed] [Google Scholar]
  4. Baines A. J., Bennett V. Synapsin I is a spectrin-binding protein immunologically related to erythrocyte protein 4.1. 1985 May 30-Jun 5Nature. 315(6018):410–413. doi: 10.1038/315410a0. [DOI] [PubMed] [Google Scholar]
  5. Baines A. J. Synapsin I and the cytoskeleton. Nature. 1987 Apr 16;326(6114):646–646. doi: 10.1038/326646a0. [DOI] [PubMed] [Google Scholar]
  6. Benfenati F., Bähler M., Jahn R., Greengard P. Interactions of synapsin I with small synaptic vesicles: distinct sites in synapsin I bind to vesicle phospholipids and vesicle proteins. J Cell Biol. 1989 May;108(5):1863–1872. doi: 10.1083/jcb.108.5.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Benfenati F., Greengard P., Brunner J., Bähler M. Electrostatic and hydrophobic interactions of synapsin I and synapsin I fragments with phospholipid bilayers. J Cell Biol. 1989 May;108(5):1851–1862. doi: 10.1083/jcb.108.5.1851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bennett V., Baines A. J., Davis J. Purification of brain analogs of red blood cell membrane skeletal proteins: ankyrin, protein 4.1 (synapsin), spectrin, and spectrin subunits. Methods Enzymol. 1986;134:55–69. doi: 10.1016/0076-6879(86)34075-8. [DOI] [PubMed] [Google Scholar]
  9. Bähler M., Benfenati F., Valtorta F., Czernik A. J., Greengard P. Characterization of synapsin I fragments produced by cysteine-specific cleavage: a study of their interactions with F-actin. J Cell Biol. 1989 May;108(5):1841–1849. doi: 10.1083/jcb.108.5.1841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Correas I., Padilla R., Avila J. The tubulin-binding sequence of brain microtubule-associated proteins, tau and MAP-2, is also involved in actin binding. Biochem J. 1990 Jul 1;269(1):61–64. doi: 10.1042/bj2690061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Czernik A. J., Pang D. T., Greengard P. Amino acid sequences surrounding the cAMP-dependent and calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7518–7522. doi: 10.1073/pnas.84.21.7518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davis J. Q., Bennett V. Brain ankyrin. A membrane-associated protein with binding sites for spectrin, tubulin, and the cytoplasmic domain of the erythrocyte anion channel. J Biol Chem. 1984 Nov 10;259(21):13550–13559. [PubMed] [Google Scholar]
  13. Dentler W. L., Granett S., Rosenbaum J. L. Ultrastructural localization of the high molecular weight proteins associated with in vitro-assembled brain microtubules. J Cell Biol. 1975 Apr;65(1):237–241. doi: 10.1083/jcb.65.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Drapeau G. R. Protease from Staphyloccus aureus. Methods Enzymol. 1976;45:469–475. doi: 10.1016/s0076-6879(76)45041-3. [DOI] [PubMed] [Google Scholar]
  15. Font B., Aubert-Foucher E. Detection by chemical cross-linking of bovine brain synapsin I self-association. Biochem J. 1989 Dec 15;264(3):893–899. doi: 10.1042/bj2640893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goldenring J. R., Lasher R. S., Vallano M. L., Ueda T., Naito S., Sternberger N. H., Sternberger L. A., DeLorenzo R. J. Association of synapsin I with neuronal cytoskeleton. Identification in cytoskeletal preparations in vitro and immunocytochemical localization in brain of synapsin I. J Biol Chem. 1986 Jun 25;261(18):8495–8504. [PubMed] [Google Scholar]
  17. Greengard P. Neuronal phosphoproteins. Mediators of signal transduction. Mol Neurobiol. 1987 Spring-Summer;1(1-2):81–119. doi: 10.1007/BF02935265. [DOI] [PubMed] [Google Scholar]
  18. Hayes N. V., Bennett A. F., Baines A. J. Selective Ca2(+)-dependent interaction of calmodulin with the head domain of synapsin 1. Biochem J. 1991 Apr 1;275(Pt 1):93–97. doi: 10.1042/bj2750093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Himmler A. Structure of the bovine tau gene: alternatively spliced transcripts generate a protein family. Mol Cell Biol. 1989 Apr;9(4):1389–1396. doi: 10.1128/mcb.9.4.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hirokawa N., Sobue K., Kanda K., Harada A., Yorifuji H. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J Cell Biol. 1989 Jan;108(1):111–126. doi: 10.1083/jcb.108.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kelly R. B. The cell biology of the nerve terminal. Neuron. 1988 Aug;1(6):431–438. doi: 10.1016/0896-6273(88)90174-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Landis D. M., Hall A. K., Weinstein L. A., Reese T. S. The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron. 1988 May;1(3):201–209. doi: 10.1016/0896-6273(88)90140-7. [DOI] [PubMed] [Google Scholar]
  24. Landis D. M. Membrane and cytoplasmic structure at synaptic junctions in the mammalian central nervous system. J Electron Microsc Tech. 1988 Oct;10(2):129–151. doi: 10.1002/jemt.1060100203. [DOI] [PubMed] [Google Scholar]
  25. McCaffery C. A., DeGennaro L. J. Determination and analysis of the primary structure of the nerve terminal specific phosphoprotein, synapsin I. EMBO J. 1986 Dec 1;5(12):3167–3173. doi: 10.1002/j.1460-2075.1986.tb04625.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Noble M., Lewis S. A., Cowan N. J. The microtubule binding domain of microtubule-associated protein MAP1B contains a repeated sequence motif unrelated to that of MAP2 and tau. J Cell Biol. 1989 Dec;109(6 Pt 2):3367–3376. doi: 10.1083/jcb.109.6.3367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Okabe T., Sobue K. Identification of a new 84/82 kDa calmodulin-binding protein, which also interacts with actin filaments, tubulin and spectrin, as synapsin I. FEBS Lett. 1987 Mar 9;213(1):184–188. doi: 10.1016/0014-5793(87)81488-6. [DOI] [PubMed] [Google Scholar]
  28. Olmsted J. B. Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem. 1981 Dec 10;256(23):11955–11957. [PubMed] [Google Scholar]
  29. Rayner D. A., Baines A. J. A novel component of the axonal cortical cytoskeleton, A60, defined by a monoclonal antibody. J Cell Sci. 1989 Nov;94(Pt 3):489–500. doi: 10.1242/jcs.94.3.489. [DOI] [PubMed] [Google Scholar]
  30. Steiner J. P., Gardner K., Baines A., Bennett V. Synapsin I: a regulated synaptic vesicle organizing protein. Brain Res Bull. 1987 Jun;18(6):777–785. doi: 10.1016/0361-9230(87)90216-4. [DOI] [PubMed] [Google Scholar]
  31. Steiner J. P., Ling E., Bennett V. Nearest neighbor analysis for brain synapsin I. Evidence from in vitro reassociation assays for association with membrane protein(s) and the Mr = 68,000 neurofilament subunit. J Biol Chem. 1987 Jan 15;262(2):905–914. [PubMed] [Google Scholar]
  32. Südhof T. C., Czernik A. J., Kao H. T., Takei K., Johnston P. A., Horiuchi A., Kanazir S. D., Wagner M. A., Perin M. S., De Camilli P. Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science. 1989 Sep 29;245(4925):1474–1480. doi: 10.1126/science.2506642. [DOI] [PubMed] [Google Scholar]
  33. Südhof T. C. The structure of the human synapsin I gene and protein. J Biol Chem. 1990 May 15;265(14):7849–7852. [PubMed] [Google Scholar]
  34. Ueda T., Greengard P. Adenosine 3':5'-monophosphate-regulated phosphoprotein system of neuronal membranes. I. Solubilization, purification, and some properties of an endogenous phosphoprotein. J Biol Chem. 1977 Jul 25;252(14):5155–5163. [PubMed] [Google Scholar]
  35. Williams R. C., Jr, Detrich H. W., 3rd Separation of tubulin from microtubule-associated proteins on phosphocellulose. Accompanying alterations in concentrations of buffer components. Biochemistry. 1979 Jun 12;18(12):2499–2503. doi: 10.1021/bi00579a010. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES