Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Jun 15;276(Pt 3):801–807. doi: 10.1042/bj2760801

Irreversible inactivation of beta-lactamase I from Bacillus cereus by chlorinated 6-spiroepoxypenicillins.

L Gledhill 1, P Williams 1, B W Bycroft 1
PMCID: PMC1151075  PMID: 1905929

Abstract

On incubation of the chlorinated 6-spiroepoxypenicillin anilides (I) and (II) [formula: see text] with beta-lactamase 1 from Bacillus cereus, three distinct processes are observed. The inhibitors act as (a) substrates, the turnover of which respectively results in a single product, namely 6-substituted 2(H)-3,4-dihydro-1,4-thiazine, (b) a transiently inhibited enzyme complex, and finally (c) an irreversibly inactivated enzyme complex. Although differing only in their stereochemistry at one centre, the anilide (K) is a more potent irreversible inactivator of beta-lactamase I than is compound (II). Analysis of irreversibly inactivated beta-lactamase I by isoelectric focusing and inspection of peptide fragmentation maps indicated that irreversible inactivation appears to be accompanied by covalent modification. These studies reveal that the chlorinated 6-spiroepoxypenicillin anilide (I) is a mechanism-based beta-lactamase inhibitor.

Full text

PDF
801

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambler R. P. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980 May 16;289(1036):321–331. doi: 10.1098/rstb.1980.0049. [DOI] [PubMed] [Google Scholar]
  2. Arisawa M., Then R. Inactivation of TEM-1 beta-lactamase by 6-acetylmethylenepenicillanic acid. Biochem J. 1983 Mar 1;209(3):609–615. doi: 10.1042/bj2090609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brenner D. G., Knowles J. R. 6-(Methoxymethylene)penicillanic acid: inactivator of RTEM beta-lactamase from Escherichia coli. Biochemistry. 1984 Nov 20;23(24):5839–5846. doi: 10.1021/bi00319a025. [DOI] [PubMed] [Google Scholar]
  4. Brenner D. G., Knowles J. R. Penicillanic acid sulfone: nature of irreversible inactivation of RTEM beta-lactamase from Escherichia coli. Biochemistry. 1984 Nov 20;23(24):5833–5839. doi: 10.1021/bi00319a024. [DOI] [PubMed] [Google Scholar]
  5. CITRI N., GARBER N., KALKSTEIN A. THE INTERACTION OF PENICILLINASE WITH PENICILLINS. 3. COMPARISON OF EXOPENICILLINASE PREPARATIONS OF VARIOUS ORIGINS. Biochim Biophys Acta. 1964 Dec 23;92:572–581. doi: 10.1016/0926-6569(64)90017-3. [DOI] [PubMed] [Google Scholar]
  6. Charnas R. L., Fisher J., Knowles J. R. Chemical studies on the inactivation of Escherichia coli RTEM beta-lactamase by clavulanic acid. Biochemistry. 1978 May 30;17(11):2185–2189. doi: 10.1021/bi00604a025. [DOI] [PubMed] [Google Scholar]
  7. Charnas R. L., Knowles J. R. Inactivation of RTEM beta-lactamase from Escherichia coli by clavulanic acid and 9-deoxyclavulanic acid. Biochemistry. 1981 May 26;20(11):3214–3219. doi: 10.1021/bi00514a035. [DOI] [PubMed] [Google Scholar]
  8. Christensen H., Martin M. T., Waley S. G. Beta-lactamases as fully efficient enzymes. Determination of all the rate constants in the acyl-enzyme mechanism. Biochem J. 1990 Mar 15;266(3):853–861. [PMC free article] [PubMed] [Google Scholar]
  9. Citri N., Kalkstein A., Samuni A., Zyk N. Conformational adaptation of RTEM beta-lactamase to cefoxitin. Eur J Biochem. 1984 Oct 15;144(2):333–338. doi: 10.1111/j.1432-1033.1984.tb08468.x. [DOI] [PubMed] [Google Scholar]
  10. Citri N., Zyk N. The interaction of penicillinase with penicillins. IV. Structural aspects of catalytic and non-catalytic interactions. Biochim Biophys Acta. 1965 Jun 22;99(3):427–441. doi: 10.1016/s0926-6593(65)80197-7. [DOI] [PubMed] [Google Scholar]
  11. Davies R. B., Abraham E. P. Separation, purification and properties of beta-lactamase I and beta-lactamase II from Bacillus cereus 569/H/9. Biochem J. 1974 Oct;143(1):115–127. doi: 10.1042/bj1430115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fisher J., Charnas R. L., Bradley S. M., Knowles J. R. Inactivation of the RTEM beta-lactamase from Escherichia coli. Interaction of penam sulfones with enzyme. Biochemistry. 1981 May 12;20(10):2726–2731. doi: 10.1021/bi00513a004. [DOI] [PubMed] [Google Scholar]
  13. Glick B. R., Brubacher L. J., Leggett D. J. A graphical method for extracting rate constants from some enzyme-catalyzed reactions not monitored to completion. Can J Biochem. 1978 Nov;56(11):1055–1057. doi: 10.1139/o78-166. [DOI] [PubMed] [Google Scholar]
  14. Kiener P. A., Waley S. G. Substrate-induced deactivation of penicillinases. Studies of beta-lactamase I by hydrogen exchange. Biochem J. 1977 Aug 1;165(2):279–285. doi: 10.1042/bj1650279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Knott-Hunziker V., Orlek B. S., Sammes P. G., Waley S. G. Kinetics of inactivation of beta-lactamase I by 6 beta-bromopenicillanic acid. Biochem J. 1980 Jun 1;187(3):797–802. doi: 10.1042/bj1870797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knott-Hunziker V., Waley S. G., Orlek B. S., Sammes P. G. Penicillinase active sites: labelling of serine-44 in beta-lactamase I by 6beta-bromopenicillanic acid. FEBS Lett. 1979 Mar 1;99(1):59–61. doi: 10.1016/0014-5793(79)80248-3. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Mezes P. S., Clarke A. J., Dmitrienko G. I., Viswanatha T. 6-beta-(Trifluoromethane sulfonyl)-amido-penicillanic acid sulfone: a potent inhibitor for beta-lactamases. FEBS Lett. 1982 Jul 5;143(2):265–267. doi: 10.1016/0014-5793(82)80113-0. [DOI] [PubMed] [Google Scholar]
  19. Monks J., Waley S. G. Imipenem as substrate and inhibitor of beta-lactamases. Biochem J. 1988 Jul 15;253(2):323–328. doi: 10.1042/bj2530323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother. 1972 Apr;1(4):283–288. doi: 10.1128/aac.1.4.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Orlek B. S., Sammes P. G., Knott-Hunziker V., Waley S. G. On the chemistry of beta-lactamase inhibition by 6 beta-bromopenicillanic acid. J Chem Soc Perkin 1. 1980;10:2322–2329. doi: 10.1039/p19800002322. [DOI] [PubMed] [Google Scholar]
  22. Samraoui B., Sutton B. J., Todd R. J., Artymiuk P. J., Waley S. G., Phillips D. C. Tertiary structural similarity between a class A beta-lactamase and a penicillin-sensitive D-alanyl carboxypeptidase-transpeptidase. 1986 Mar 27-Apr 2Nature. 320(6060):378–380. doi: 10.1038/320378a0. [DOI] [PubMed] [Google Scholar]
  23. Waley S. G. A spectrophotometric assay of beta-lactamase action on penicillins. Biochem J. 1974 Jun;139(3):789–790. doi: 10.1042/bj1390789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Waxman D. J., Strominger J. L. Sequence of active site peptides from the penicillin-sensitive D-alanine carboxypeptidase of Bacillus subtilis. Mechanism of penicillin action and sequence homology to beta-lactamases. J Biol Chem. 1980 May 10;255(9):3964–3976. [PubMed] [Google Scholar]
  25. Zyk N., Citri N. The interaction of penicillinase with penicillins. V. Conformative response constants. Biochim Biophys Acta. 1967 Sep 12;146(1):219–226. doi: 10.1016/0005-2744(67)90088-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES