Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Jun 1;276(Pt 2):439–445. doi: 10.1042/bj2760439

Pyruvate decarboxylase from Zymomonas mobilis. Structure and re-activation of apoenzyme by the cofactors thiamin diphosphate and magnesium ion.

R J Diefenbach 1, R G Duggleby 1
PMCID: PMC1151111  PMID: 2049073

Abstract

To study the mechanism of re-activation of Zymomonas mobilis pyruvate decarboxylase apoenzyme by its cofactors thiamin diphosphate and Mg2+, cofactor-free enzyme was prepared by dialysis against 1 mM-dipicolinic acid at pH 8.2. This apoenzyme was then used in a series of experiments that included determination of: (a) the affinity towards one cofactor when the other was present at saturating concentrations; (b) cofactor-binding rates by measuring the quenching of tryptophan fluorescence on the apoenzyme; (c) the effect of replacement of cofactors with various analogues; (d) the stoichiometry of bound cofactors in holoenzyme; and (e) the molecular mass of apoenzyme by gel filtration. The results of these experiments form the basis for a proposed model for the re-activation of Z. mobilis pyruvate decarboxylase apoenzyme by its cofactors. In this model there exists two alterative but equivalent pathways for cofactor binding. In each pathway the first step is an independent reversible binding of either thiamin diphosphate (Kd 187 microM) or Mg2+ (Kd 1.31 mM) to free apoenzyme. When both cofactors are present, the second cofactor-binding step to form active holoenzyme is a slow quasi-irreversible step. This second binding step is a co-operative process for both thiamin diphosphate (Kd 0.353 microM) and Mg2+ (Kd 2.47 microM). Both the apo- and the holo-enzyme have a tetrameric subunit structure, with cofactors binding in a 1:1 ratio with each subunit.

Full text

PDF
439

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Boiteux A., Hess B. Allosteric properties of yeast pyruvate decarboxylase. FEBS Lett. 1970 Aug 31;9(5):293–296. doi: 10.1016/0014-5793(70)80381-7. [DOI] [PubMed] [Google Scholar]
  3. Duggleby R. G. Regression analysis of nonlinear Arrhenius plots: an empirical model and a computer program. Comput Biol Med. 1984;14(4):447–455. doi: 10.1016/0010-4825(84)90045-3. [DOI] [PubMed] [Google Scholar]
  4. Gounaris A. D., Turkenkopf I., Buckwald S., Young A. Pyruvate decarboxylase. I. Protein dissociation into subunits under conditions in which thiamine pyrophosphate is released. J Biol Chem. 1971 Mar 10;246(5):1302–1309. [PubMed] [Google Scholar]
  5. Gounaris A. D., Turkenkopf I., Civerchia L. L., Greenlie J. Pyruvate decarboxylase III. Specificity restrictions for thiamine pyrophosphate in the protein association step, sub-unit structure. Biochim Biophys Acta. 1975 Oct 20;405(2):492–499. [PubMed] [Google Scholar]
  6. Hamanaka W. Studies on the synthesis and the physicochemical properties of thiochrome phosphates. J Vitaminol (Kyoto) 1966 Sep 10;12(3):231–239. doi: 10.5925/jnsv1954.12.231. [DOI] [PubMed] [Google Scholar]
  7. Hübner G., König S., Schellenberger A., Koch M. H. An X-ray solution scattering study of the cofactor and activator induced structural changes in yeast pyruvate decarboxylase (PDC). FEBS Lett. 1990 Jun 18;266(1-2):17–20. doi: 10.1016/0014-5793(90)81495-a. [DOI] [PubMed] [Google Scholar]
  8. Hübner G., Weidhase R., Schellenberger A. The mechanism of substrate activation of pyruvate decarboxylase: a first approach. Eur J Biochem. 1978 Dec 1;92(1):175–181. doi: 10.1111/j.1432-1033.1978.tb12735.x. [DOI] [PubMed] [Google Scholar]
  9. Kuo D. J., Dikdan G., Jordan F. Resolution of brewers' yeast pyruvate decarboxylase into two isozymes. J Biol Chem. 1986 Mar 5;261(7):3316–3319. [PubMed] [Google Scholar]
  10. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  11. Morey A. V., Juni E. Studies on the nature of the binding of thiamine pyrophosphate to enzymes. J Biol Chem. 1968 Jun 10;243(11):3009–3019. [PubMed] [Google Scholar]
  12. Neale A. D., Scopes R. K., Wettenhall R. E., Hoogenraad N. J. Nucleotide sequence of the pyruvate decarboxylase gene from Zymomonas mobilis. Nucleic Acids Res. 1987 Feb 25;15(4):1753–1761. doi: 10.1093/nar/15.4.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Neale A. D., Scopes R. K., Wettenhall R. E., Hoogenraad N. J. Pyruvate decarboxylase of Zymomonas mobilis: isolation, properties, and genetic expression in Escherichia coli. J Bacteriol. 1987 Mar;169(3):1024–1028. doi: 10.1128/jb.169.3.1024-1028.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nishimune T., Ito S., Abe M., Kimoto M., Hayashi R. Conditions for thiamin assay by cyanogen bromide oxidation. J Nutr Sci Vitaminol (Tokyo) 1988 Dec;34(6):543–552. doi: 10.3177/jnsv.34.543. [DOI] [PubMed] [Google Scholar]
  15. Sanemori H., Yoshida S., Kawasaki T. Studies on the binding of thiamine pyrophosphate to apoenzyme of yeast pyruvate decarboxylase. J Biochem. 1974 Jan;75(1):123–129. doi: 10.1093/oxfordjournals.jbchem.a130366. [DOI] [PubMed] [Google Scholar]
  16. Schellenberger A., Hübner G. Zur Theorie der Thiaminpyrophosphat-Wirkung. IV. Mechanismus und Kinetik der Rekombination und daraus abgeleitete Bindungsverhältnisse im aktiven Zentrum der Hefe-Pyruvatdecarboxylase. Hoppe Seylers Z Physiol Chem. 1967 May;348(5):491–500. [PubMed] [Google Scholar]
  17. Sieber M., König S., Hübner G., Schellenberger A. A rapid procedure for the preparation of highly purified pyruvate decarboxylase from brewer's yeast. Biomed Biochim Acta. 1983;42(4):343–349. [PubMed] [Google Scholar]
  18. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  19. Ullrich J., Donner I. Fluorimetric study of 2-p-toluidinonaphthalene-6-sulfonate binding to cytoplasmic yeast pyruvate decarboxylase. Hoppe Seylers Z Physiol Chem. 1970 Aug;351(8):1030–1034. doi: 10.1515/bchm2.1970.351.2.1030. [DOI] [PubMed] [Google Scholar]
  20. Ullrich J. Structure-function relationships in pyruvate decarboxylase of yeast and wheat germ. Ann N Y Acad Sci. 1982;378:287–305. doi: 10.1111/j.1749-6632.1982.tb31203.x. [DOI] [PubMed] [Google Scholar]
  21. Wittorf J. H., Gubler C. J. Coenzyme binding in yeast pyruvate decarboxylase. A fluorescent enzyme-inhibitor complex. Eur J Biochem. 1970 May 1;14(1):53–60. doi: 10.1111/j.1432-1033.1970.tb00260.x. [DOI] [PubMed] [Google Scholar]
  22. Zehender H., Trescher D., Ullrich J. Improved purification of pyruvate decarboxylase from wheat germ. Its partial characterisation and comparison with the yeast enzyme. Eur J Biochem. 1987 Aug 17;167(1):149–154. doi: 10.1111/j.1432-1033.1987.tb13316.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES