Abstract
Two high-Mr mucus glycoproteins (mucins), CTM-A and CTM-B, were highly purified from canine tracheal pouch secretions, and their macromolecular properties as well as polymeric structure were investigated. On SDS/composite-gel electrophoresis, a diffuse band was observed for each mucin. Polyacrylamide-gel electrophoresis using 6% gels also showed the absence of low-Mr contaminants in the mucins. Comparison of chemical and amino acid compositions revealed significant differences between the two mucins. Using a static-laser-light-scattering technique, CTM-A and CTM-B were found to have weight-average Mr values of about 11.0 x 10(6) and 1.4 x 10(6) respectively. Both mucins showed concentration-dependent aggregation in buffer containing 6 M-guanidine hydrochloride. Under similar experimental conditions, reduced-alkylated CTM-A had an Mr of 5.48 x 10(6) and showed no concentration-dependent aggregation. Hydrophobic properties of the mucins, investigated by the fluorescent probe technique using mansylphenylalanine as the probe, showed the presence of a large number of low-affinity (KD approx. 10(5) M) binding sites. These sites appeared to be located on the non-glycosylated regions of the protein core, since Pronase digestion of the mucins almost completely eliminated probe binding. Reduction of disulphide bonds of CTM-A and CTM-B did not significantly alter the probe-binding properties. Also, addition of increasing NaCl concentrations (0.03-1.0 M) to the buffer caused only a small change in the hydrophobic properties of native and reduced-alkylated mucins. CTM-A was deglycosylated, without notable in the hydrophobic properties of native and reduced-alkylated mucins. CTM-A was deglycosylated, without notable degradation, using a combination of chemical and enzymic methods. On SDS/PAGE the protein core was estimated to have an Mr of approx. 60,000. On the basis of the protein and carbohydrate contents of the major mucin CTM-A, the mucin monomer was calculated to have an Mr of approx. 140,000. The high Mr (11 x 10(6] observed by physical methods is therefore due to self-association of the mucin monomer subunits.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Azzi A. The use of fluorescent probes for the study of membranes. Methods Enzymol. 1974;32:234–246. doi: 10.1016/0076-6879(74)32024-1. [DOI] [PubMed] [Google Scholar]
- Bhavanandan V. P., Hegarty J. D. Identification of the mucin core protein by cell-free translation of messenger RNA from bovine submaxillary glands. J Biol Chem. 1987 Apr 25;262(12):5913–5917. [PubMed] [Google Scholar]
- Brown D. T., Marriott C., Beeson M. F., Barrett-Bee K. Isolation and partial characterization of a rheologically active glycoprotein fraction from pooled human sputum. Am Rev Respir Dis. 1981 Sep;124(3):285–291. doi: 10.1164/arrd.1981.124.3.285. [DOI] [PubMed] [Google Scholar]
- Carlstedt I., Sheehan J. K., Corfield A. P., Gallagher J. T. Mucous glycoproteins: a gel of a problem. Essays Biochem. 1985;20:40–76. [PubMed] [Google Scholar]
- Chace K. V., Flux M., Sachdev G. P. Comparison of physicochemical properties of purified mucus glycoproteins isolated from respiratory secretions of cystic fibrosis and asthmatic patients. Biochemistry. 1985 Dec 3;24(25):7334–7341. doi: 10.1021/bi00346a047. [DOI] [PubMed] [Google Scholar]
- Desai V. C., Naziruddin B., Graves D. C., Reyes de la Rocha S., Sachdev G. P. Production and characterization of monoclonal antibodies to purified deglycosylated cystic fibrosis respiratory mucin: evidence for the presence of four immunologically distinct epitopes. Hybridoma. 1991 Apr;10(2):285–296. doi: 10.1089/hyb.1991.10.285. [DOI] [PubMed] [Google Scholar]
- Hill H. D., Jr, Reynolds J. A., Hill R. L. Purification, composition, molecular weight, and subunit structure of ovine submaxillary mucin. J Biol Chem. 1977 Jun 10;252(11):3791–3798. [PubMed] [Google Scholar]
- Holden K. G., Yim N. C., Griggs L. J., Weisbach J. A. Gel electrophoresis of mucous glycoproteins. I. Effect of gel porosity. Biochemistry. 1971 Aug 3;10(16):3105–3109. doi: 10.1021/bi00792a019. [DOI] [PubMed] [Google Scholar]
- Houdret N., Lamblin G., Scharfman A., Humbert P., Roussel P. Activation of bronchial mucin proteolysis by 4-aminophenylmercuric acetate and disulphide bond reducing agents. Biochim Biophys Acta. 1983 Jul 5;758(1):24–29. doi: 10.1016/0304-4165(83)90005-3. [DOI] [PubMed] [Google Scholar]
- Khan M. A., Wolf D. P., Litt M. Effect of mucolytic agents on the rheological properties of tracheal mucus. Biochim Biophys Acta. 1976 Sep 24;444(2):369–373. doi: 10.1016/0304-4165(76)90380-9. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Liao T. H., Blumenfeld O. O., Park S. S. Isolation and characterization of glycoproteins from canine tracheal pouch secretions. Biochim Biophys Acta. 1979 Apr 25;577(2):442–453. doi: 10.1016/0005-2795(79)90048-5. [DOI] [PubMed] [Google Scholar]
- Litt M., Khan M. A., Chakrin L. W., Wardell J. R., Jr, Christian P. The viscoelasticity of fractionated canine tracheal mucus. Biorheology. 1974 Mar;11(2):111–117. doi: 10.3233/bir-1974-11202. [DOI] [PubMed] [Google Scholar]
- MATTHEWS L. W., SPECTOR S., LEMM J., POTTER J. L. STUDIES ON PULMONARY SECRETIONS. I. THE OVER-ALL CHEMICAL COMPOSITION OF PULMONARY SECRETIONS FROM PATIENTS WITH CYSTIC FIBROSIS, BRONCHIECTASIS, AND LARYNGECTOMY. Am Rev Respir Dis. 1963 Aug;88:199–204. doi: 10.1164/arrd.1963.88.2.199. [DOI] [PubMed] [Google Scholar]
- Mantle M., Forstner J. F. The effects of delipidation on the major antigenic determinant of purified human intestinal mucin. Biochem Cell Biol. 1986 Mar;64(3):223–228. doi: 10.1139/o86-032. [DOI] [PubMed] [Google Scholar]
- Marianne T., Perini J. M., Houvenaghel M. C., Tramu G., Lamblin G., Roussel P. Action of trifluoromethanesulfonic acid on highly glycosylated regions of human bronchial mucins. Carbohydr Res. 1986 Aug 15;151:7–19. doi: 10.1016/s0008-6215(00)90325-2. [DOI] [PubMed] [Google Scholar]
- Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
- Rao K. S., Masson P. L. Study of the primary structures of the peptide core of bovine estrus cervical mucin. Possible existence of small similar subunits. J Biol Chem. 1977 Nov 10;252(21):7788–7795. [PubMed] [Google Scholar]
- Ringler N. J., Selvakumar R., Woodward H. D., Simet I. M., Bhavanandan V. P., Davidson E. A. Structure of canine tracheobronchial mucin glycoprotein. Biochemistry. 1987 Aug 25;26(17):5322–5328. doi: 10.1021/bi00391a016. [DOI] [PubMed] [Google Scholar]
- Sachdev G. P., Brownstein A. D., Fruton J. S. N-methyl-2-anilinonaphthalene-6-sulfonyl peptides as fluorescent probes for pepsin-substrate interaction. J Biol Chem. 1973 Sep 25;248(18):6292–6299. [PubMed] [Google Scholar]
- Sachdev G. P., Fox O. F., Wen G., Schroeder T., Elkins R. C., Carubelli R. Isolation and characterization of glycoproteins from canine tracheal mucus. Biochim Biophys Acta. 1978 Sep 26;536(1):184–196. doi: 10.1016/0005-2795(78)90064-8. [DOI] [PubMed] [Google Scholar]
- Sachdev G. P., Zodrow J. M., Carubelli R. Hydrophobic interaction of fluorescent probes with fetuin, ovine submaxillary mucin, and canine tracheal mucins. Biochim Biophys Acta. 1979 Sep 29;580(1):85–90. doi: 10.1016/0005-2795(79)90199-5. [DOI] [PubMed] [Google Scholar]
- Shankar V., Naziruddin B., Reyes de la Rocha S., Sachdev G. P. Evidence of hydrophobic domains in human respiratory mucins. Effect of sodium chloride on hydrophobic binding properties. Biochemistry. 1990 Jun 19;29(24):5856–5864. doi: 10.1021/bi00476a030. [DOI] [PubMed] [Google Scholar]
- Slomiany A., Galicki N. I., Kojima K., Banas-Gruszka Z., Slomiany B. L. Glyceroglucolipids of the mucous barrier of dog stomach. Biochim Biophys Acta. 1981 Jul 24;665(1):88–91. doi: 10.1016/0005-2760(81)90236-8. [DOI] [PubMed] [Google Scholar]
- Slomiany A., Witas H., Aono M., Slomiany B. L. Covalently linked fatty acids in gastric mucus glycoprotein of cystic fibrosis patients. J Biol Chem. 1983 Jul 25;258(14):8535–8538. [PubMed] [Google Scholar]
- Slomiany B. L., Murty V. L., Sarosiek J., Piotrowski J., Slomiany A. Role of associated and covalently bound lipids in salivary mucin hydrophobicity: effect of proteolysis and disulfide bridge reduction. Biochem Biophys Res Commun. 1988 Mar 30;151(3):1046–1053. doi: 10.1016/s0006-291x(88)80471-6. [DOI] [PubMed] [Google Scholar]
- Smith B. F., LaMont J. T. Hydrophobic binding properties of bovine gallbladder mucin. J Biol Chem. 1984 Oct 10;259(19):12170–12177. [PubMed] [Google Scholar]
- Turner D. C., Brand L. Quantitative estimation of protein binding site polarity. Fluorescence of N-arylaminonaphthalenesulfonates. Biochemistry. 1968 Oct;7(10):3381–3390. doi: 10.1021/bi00850a011. [DOI] [PubMed] [Google Scholar]
- Walsh K. A., Ericsson L. H., Parmelee D. C., Titani K. Advances in protein sequencing. Annu Rev Biochem. 1981;50:261–284. doi: 10.1146/annurev.bi.50.070181.001401. [DOI] [PubMed] [Google Scholar]
- Wardell J. R., Jr, Chakrin L. W., Payne B. J. The canine tracheal pouch. A model for use in respiratory mucus research. Am Rev Respir Dis. 1970 May;101(5):741–754. doi: 10.1164/arrd.1970.101.5.741. [DOI] [PubMed] [Google Scholar]
- Woodward H. D., Ringler N. J., Selvakumar R., Simet I. M., Bhavanandan V. P., Davidson E. A. Deglycosylation studies on tracheal mucin glycoproteins. Biochemistry. 1987 Aug 25;26(17):5315–5322. doi: 10.1021/bi00391a015. [DOI] [PubMed] [Google Scholar]
- Woodward H., Horsey B., Bhavanandan V. P., Davidson E. A. Isolation, purification, and properties of respiratory mucus glycoproteins. Biochemistry. 1982 Feb 16;21(4):694–701. doi: 10.1021/bi00533a017. [DOI] [PubMed] [Google Scholar]