Abstract
Heat treatment of human erythrocytes led to increased passive cation permeability, followed by haemolysis. K+ leakage was linear up to a loss of about 80% in the temperature range 46-54 degrees C. Kinetic analysis of the results revealed an activation energy of 246 kJ/mol, implicating a transition in the membrane as critical step. Pretreatment of erythrocytes with 4,4'-di-isothiocyano-2,2'-stilbenedisulphonate, chymotrypsin or chlorpromazine caused a potentiation of subsequent heat-induced K+ leakage. Photodynamic treatment of erythrocytes with Photofrin II, eosin isothiocyanate or a porphyrin-Cu2+ complex as sensitizer also induced an increase in passive cation permeability, ultimately resulting in colloid osmotic haemolysis. The combination of photodynamic treatment immediately followed by hyperthermia had a synergistic effect on K+ leakage. Analysis of the results by the Arrhenius equation revealed that both the activation energy and the frequency factor of heat-induced K+ leakage were decreased significantly by preceding photodynamic treatment, suggesting that hyperthermia and photodynamic treatment have a common target for the induction of K+ leakage. Several lines of reasoning indicate that this common target is band 3. A model is thus proposed for the observed potentiation of hyperthermically induced K+ leakage by photodynamic treatment, in which photo-oxidation of band 3 results in increased sensitivity to subsequent thermal denaturation. These phenomena may be of more general significance, as photodynamic treatment and hyperthermia interacted synergistically with respect to K+ leakage with L929 fibroblasts also.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol. 1974;15(3):207–226. doi: 10.1007/BF01870088. [DOI] [PubMed] [Google Scholar]
- Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. II. Effects of proteolytic enzymes on disulfonic stilbene sites of surface proteins. J Membr Biol. 1974;15(3):227–248. doi: 10.1007/BF01870089. [DOI] [PubMed] [Google Scholar]
- Christensen T., Wahl A., Smedshammer L. Effects of haematoporphyrin derivative and light in combination with hyperthermia on cells in culture. Br J Cancer. 1984 Jul;50(1):85–89. doi: 10.1038/bjc.1984.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deuticke B., Henseleit U., Haest C. W., Heller K. B., Dubbelman T. M. Enhancement of transbilayer mobility of a membrane lipid probe accompanies formation of membrane leaks during photodynamic treatment of erythrocytes. Biochim Biophys Acta. 1989 Jun 26;982(1):53–61. doi: 10.1016/0005-2736(89)90173-9. [DOI] [PubMed] [Google Scholar]
- Dewey W. C. Failla memorial lecture. The search for critical cellular targets damaged by heat. Radiat Res. 1989 Nov;120(2):191–204. [PubMed] [Google Scholar]
- Dubbelman T. M., De Goeij A. F., Christianse K., Van Steveninck J. Protoporphyrin-induced photodynamic effects on band 3 protein of human erythrocyte membranes. Biochim Biophys Acta. 1981 Dec 7;649(2):310–316. doi: 10.1016/0005-2736(81)90420-x. [DOI] [PubMed] [Google Scholar]
- Dubbelman T. M., Haasnoot C., van Steveninck J. Temperature dependence of photodynamic red cell membrane damage. Biochim Biophys Acta. 1980 Sep 2;601(1):220–227. doi: 10.1016/0005-2736(80)90526-x. [DOI] [PubMed] [Google Scholar]
- Dubbelman T. M., Van Steveninck J. Photodynamic effects of hematoporphyrin-derivative on transmembrane transport systems of murine L929 fibroblasts. Biochim Biophys Acta. 1984 Apr 11;771(2):201–207. doi: 10.1016/0005-2736(84)90534-0. [DOI] [PubMed] [Google Scholar]
- Girotti A. W. Photodynamic lipid peroxidation in biological systems. Photochem Photobiol. 1990 Apr;51(4):497–509. doi: 10.1111/j.1751-1097.1990.tb01744.x. [DOI] [PubMed] [Google Scholar]
- Gomer C. J., Rucker N., Ferrario A., Wong S. Properties and applications of photodynamic therapy. Radiat Res. 1989 Oct;120(1):1–18. [PubMed] [Google Scholar]
- Grzelińska E., Bartosz G., Leyko W., Chapman I. V. Effect of hyperthermia and ionizing radiation on the erythrocyte membrane. Int J Radiat Biol Relat Stud Phys Chem Med. 1982 Jul;42(1):45–55. doi: 10.1080/09553008214550901. [DOI] [PubMed] [Google Scholar]
- Henderson B. W., Waldow S. M., Potter W. R., Dougherty T. J. Interaction of photodynamic therapy and hyperthermia: tumor response and cell survival studies after treatment of mice in vivo. Cancer Res. 1985 Dec;45(12 Pt 1):6071–6077. [PubMed] [Google Scholar]
- Jennings M. L., Passow H. Anion transport across the erythrocyte membrane, in situ proteolysis of band 3 protein, and cross-linking of proteolytic fragments by 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonate. Biochim Biophys Acta. 1979 Jul 5;554(2):498–519. doi: 10.1016/0005-2736(79)90387-0. [DOI] [PubMed] [Google Scholar]
- Lamola A. A., Yamane T., Trozzolo A. M. Cholesterol hydroperoxide formation in red cell membranes and photohemolysis in erythropoietic protoporphyria. Science. 1973 Mar 16;179(4078):1131–1133. doi: 10.1126/science.179.4078.1131. [DOI] [PubMed] [Google Scholar]
- Lepke S., Fasold H., Pring M., Passow H. A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4,4'-diisothiocyano stilbene-2,2'-disulfonic acid (DIDS) and its dihydro derivative (H2DIDS). J Membr Biol. 1976 Oct 20;29(1-2):147–177. doi: 10.1007/BF01868957. [DOI] [PubMed] [Google Scholar]
- Lepock J. R., Frey H. E., Bayne H., Markus J. Relationship of hyperthermia-induced hemolysis of human erythrocytes to the thermal denaturation of membrane proteins. Biochim Biophys Acta. 1989 Apr 14;980(2):191–201. doi: 10.1016/0005-2736(89)90399-4. [DOI] [PubMed] [Google Scholar]
- Leyko W., Bartosz G. Membrane effects of ionizing radiation and hyperthermia. Int J Radiat Biol Relat Stud Phys Chem Med. 1986 May;49(5):743–770. doi: 10.1080/09553008514552971. [DOI] [PubMed] [Google Scholar]
- Lysko K. A., Carlson R., Taverna R., Snow J., Brandts J. F. Protein involvement in structural transition of erythrocyte ghosts. Use of thermal gel analysis to detect protein aggregation. Biochemistry. 1981 Sep 15;20(19):5570–5576. doi: 10.1021/bi00522a034. [DOI] [PubMed] [Google Scholar]
- Passow H., Fasold H., Lepke S., Pring M., Schuhmann B. Chemical and enzymatic modification of membrane proteins and anion transport in human red blood cells. Adv Exp Med Biol. 1977;84:353–379. doi: 10.1007/978-1-4684-3279-4_17. [DOI] [PubMed] [Google Scholar]
- Pooler J. P. A new hypothesis for the target in photohemolysis: dimers of the band 3 protein. Photochem Photobiol. 1986 Mar;43(3):263–266. doi: 10.1111/j.1751-1097.1986.tb05603.x. [DOI] [PubMed] [Google Scholar]
- Pooler J. P., Girotti A. W. Photohemolysis of human erythrocytes labeled in band 3 with eosin-isothiocyanate. Photochem Photobiol. 1986 Oct;44(4):495–499. doi: 10.1111/j.1751-1097.1986.tb04698.x. [DOI] [PubMed] [Google Scholar]
- Prinsze C., Dubbelman T. M., Van Steveninck J. Potentiation of thermal inactivation of glyceraldehyde-3-phosphate dehydrogenase by photodynamic treatment. A possible model for the synergistic interaction between photodynamic therapy and hyperthermia. Biochem J. 1991 Jun 1;276(Pt 2):357–362. doi: 10.1042/bj2760357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prinsze C., Dubbelman T. M., Van Steveninck J. Protein damage, induced by small amounts of photodynamically generated singlet oxygen or hydroxyl radicals. Biochim Biophys Acta. 1990 Apr 19;1038(2):152–157. doi: 10.1016/0167-4838(90)90198-o. [DOI] [PubMed] [Google Scholar]
- Ramjeesingh M., Gaarn A., Rothstein A. The location of a disulfonic stilbene binding site in band 3, the anion transport protein of the red blood cell membrane. Biochim Biophys Acta. 1980 Jun 20;599(1):127–139. doi: 10.1016/0005-2736(80)90062-0. [DOI] [PubMed] [Google Scholar]
- Schothorst A. A., Van Steveninck J., Went L. N., Suurmond D. Protoporphyrin-induced photohemolysis in protoporphyria and in normal red blood cells. Clin Chim Acta. 1970 Apr;28(1):41–49. doi: 10.1016/0009-8981(70)90158-0. [DOI] [PubMed] [Google Scholar]
- Schothorst A. A., van Steveninck J., Went L. N., Suurmond D. Photodynamic damage of the erythrocyte membrane caused by protoporphyrin in protoporphyria and in normal red blood cells. Clin Chim Acta. 1972 Jun;39(1):161–170. doi: 10.1016/0009-8981(72)90312-9. [DOI] [PubMed] [Google Scholar]
- Snow J. W., Brandts J. F., Low P. S. The effects of anion transport inhibitors on structural transitions in erythrocyte membranes. Biochim Biophys Acta. 1978 Oct 4;512(3):579–591. doi: 10.1016/0005-2736(78)90167-0. [DOI] [PubMed] [Google Scholar]
- Steck T. L., Ramos B., Strapazon E. Proteolytic dissection of band 3, the predominant transmembrane polypeptide of the human erythrocyte membrane. Biochemistry. 1976 Mar 9;15(5):1153–1161. doi: 10.1021/bi00650a030. [DOI] [PubMed] [Google Scholar]
- Westra A., Dewey W. C. Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cells in vitro. Int J Radiat Biol Relat Stud Phys Chem Med. 1971;19(5):467–477. doi: 10.1080/09553007114550601. [DOI] [PubMed] [Google Scholar]
- van Steveninck J., Boegheim J. P., Dubbelman T. M. The influence of cupric ions on porphyrin-induced photodynamic membrane damage in human red blood cells. Biochim Biophys Acta. 1985 Nov 21;821(1):1–7. doi: 10.1016/0005-2736(85)90146-4. [DOI] [PubMed] [Google Scholar]
