Abstract
Human gel-filtered platelets aggregate at greater than 20 microM-ganodermic acid S [lanosta-7,9(11),24-triene-3 beta, 15 alpha-diacetoxy-26-oic acid] [Wang, Chen, Shiao & Wang (1989) Biochim. Biophys. Acta 986, 151-160]. This study showed that platelets at less than 20 microM-ganodermic acid S displayed both concentration- and time-dependent inhibition of function, in which the agent potency in response to inducers was ADP-fibrinogen greater than collagen greater than thrombin. The agent caused a biphasic time-dependent effect on platelet phosphoinositide metabolism. The first phase involved the decrease in the pool size of phosphoinositide by 10-20%. The second phase, in which both the resynthesis of phosphatidylinositol 4,5-bisphosphate (PIP2) and the decrease of [32P]phosphatidic acid occurred, took place after 30 min. Scanning electron microscopy also revealed a time-dependent morphological change in platelets in the presence of the agent. The cells initially became spiculate discs, then swelled to a 'potato-like' morphology at 60 min. Further studies on the time-dependent inhibition of thrombin response revealed that: (1) the percentage inhibition of cell aggregation was comparable with that occurring with an increase of cytosolic free Ca2+ concentration [( Ca2+]i) or the phosphorylation of marker proteins; (2) [32P]Pi-labelled platelets showed the time-dependent inhibition of thrombin-stimulated PIP2 resynthesis as indicated by first-2-min time-course studies of phosphoinositide interconversion; (3) scanning electron microscopy revealed that the aged platelet population showed an increase in the percentage of non-responding cells on prolonged incubation. The results, taken together, enabled one to discuss a possible mechanism for the time-dependent inhibition by ganodermic acid S of platelet response to thrombin.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett J. S., Vilaire G. Exposure of platelet fibrinogen receptors by ADP and epinephrine. J Clin Invest. 1979 Nov;64(5):1393–1401. doi: 10.1172/JCI109597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Billah M. M., Lapetina E. G. Rapid decrease of phosphatidylinositol 4,5-bisphosphate in thrombin-stimulated platelets. J Biol Chem. 1982 Nov 10;257(21):12705–12708. [PubMed] [Google Scholar]
- Chalvardjian A., Rudnicki E. Determination of lipid phosphorus in the nanomolar range. Anal Biochem. 1970 Jul;36(1):225–226. doi: 10.1016/0003-2697(70)90352-0. [DOI] [PubMed] [Google Scholar]
- Colman R. W. Platelet activation: role of an ADP receptor. Semin Hematol. 1986 Apr;23(2):119–128. [PubMed] [Google Scholar]
- Ferrell J. E., Jr, Huestis W. H. Phosphoinositide metabolism and the morphology of human erythrocytes. J Cell Biol. 1984 Jun;98(6):1992–1998. doi: 10.1083/jcb.98.6.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrell J. E., Jr, Mitchell K. T., Huestis W. H. Membrane bilayer balance and platelet shape: morphological and biochemical responses to amphipathic compounds. Biochim Biophys Acta. 1988 Apr 7;939(2):223–237. doi: 10.1016/0005-2736(88)90066-1. [DOI] [PubMed] [Google Scholar]
- Hanasaki K., Nakano T., Arita H. Biphasic action of phospholipase A in collagen-stimulated rat platelets. J Biochem. 1987 Jul;102(1):5–8. doi: 10.1093/oxfordjournals.jbchem.a122040. [DOI] [PubMed] [Google Scholar]
- Holmsen H., Dangelmaier C. A., Akkerman J. W. Determination of levels of glycolytic intermediates and nucleotides in platelets by pulse-labeling with [32P]orthophosphate. Anal Biochem. 1983 May;131(1):266–272. doi: 10.1016/0003-2697(83)90165-3. [DOI] [PubMed] [Google Scholar]
- Holmsen H., Dangelmaier C. A., Rongved S. Tight coupling of thrombin-induced acid hydrolase secretion and phosphatidate synthesis to receptor occupancy in human platelets. Biochem J. 1984 Aug 15;222(1):157–167. doi: 10.1042/bj2220157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanaho Y., Fujii T. Effect of some amphiphilic drugs on the membrane morphology and aggregation of rabbit platelets. Biochem Biophys Res Commun. 1982 May 31;106(2):513–519. doi: 10.1016/0006-291x(82)91140-8. [DOI] [PubMed] [Google Scholar]
- Lages B., Scrutton M. C., Holmsen H. Studies on gel-filtered human platelets: isolation and characterization in a medium containing no added Ca2+, Mg2+, or K+. J Lab Clin Med. 1975 May;85(5):811–825. [PubMed] [Google Scholar]
- Marguerie G. A., Plow E. F., Edgington T. S. Human platelets possess an inducible and saturable receptor specific for fibrinogen. J Biol Chem. 1979 Jun 25;254(12):5357–5363. [PubMed] [Google Scholar]
- Mauco G., Dangelmaier C. A., Smith J. B. Inositol lipids, phosphatidate and diacylglycerol share stearoylarachidonoylglycerol as a common backbone in thrombin-stimulated human platelets. Biochem J. 1984 Dec 15;224(3):933–940. doi: 10.1042/bj2240933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nachmias V. T., Sullender J. S., Fallon J. R. Effects of local anesthetics on human platelets: filopodial suppression and endogenous proteolysis. Blood. 1979 Jan;53(1):63–72. [PubMed] [Google Scholar]
- Nakano T., Hanasaki K., Arita H. Possible involvement of cytoskeleton in collagen-stimulated activation of phospholipases in human platelets. J Biol Chem. 1989 Apr 5;264(10):5400–5406. [PubMed] [Google Scholar]
- Nakano T., Terawaki A., Arita H. Measurement of thromboxane A2-induced elevation of ionized calcium in collagen-stimulated platelets with the photoprotein, aequorin. J Biochem. 1986 Apr;99(4):1285–1288. doi: 10.1093/oxfordjournals.jbchem.a135594. [DOI] [PubMed] [Google Scholar]
- Nakano T., Terawaki A., Arita H. Signal transduction in collagen-stimulated rat platelets is composed of three stages. J Biochem. 1987 May;101(5):1169–1180. doi: 10.1093/oxfordjournals.jbchem.a121981. [DOI] [PubMed] [Google Scholar]
- Peerschke E. I., Zucker M. B., Grant R. A., Egan J. J., Johnson M. M. Correlation between fibrinogen binding to human platelets and platelet aggregability. Blood. 1980 May;55(5):841–847. [PubMed] [Google Scholar]
- Pollock W. K., Rink T. J., Irvine R. F. Liberation of [3H]arachidonic acid and changes in cytosolic free calcium in fura-2-loaded human platelets stimulated by ionomycin and collagen. Biochem J. 1986 May 1;235(3):869–877. doi: 10.1042/bj2350869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sano K., Takai Y., Yamanishi J., Nishizuka Y. A role of calcium-activated phospholipid-dependent protein kinase in human platelet activation. Comparison of thrombin and collagen actions. J Biol Chem. 1983 Feb 10;258(3):2010–2013. [PubMed] [Google Scholar]
- Shiao Y. J., Chen J. C., Wang C. T. The solubilization and morphological change of human platelets in various detergents. Biochim Biophys Acta. 1989 Mar 27;980(1):56–68. doi: 10.1016/0005-2736(89)90200-9. [DOI] [PubMed] [Google Scholar]
- Steen V. M., Tysnes O. B., Holmsen H. Synergism between thrombin and adrenaline (epinephrine) in human platelets. Marked potentiation of inositol phospholipid metabolism. Biochem J. 1988 Jul 15;253(2):581–586. doi: 10.1042/bj2530581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai W. J., Chen J. C., Wang C. T. Changes in both calcium pool size and morphology of human platelets incubated in various concentrations of calcium ion. Calcium-specific bleb formation on platelet-membrane surface. Biochim Biophys Acta. 1988 May 9;940(1):105–120. doi: 10.1016/0005-2736(88)90014-4. [DOI] [PubMed] [Google Scholar]
- Tysnes O. B., Verhoeven A. J., Holmsen H. Phosphate turnover of phosphatidylinositol in resting and thrombin-stimulated platelets. Biochim Biophys Acta. 1986 Nov 28;889(2):183–191. doi: 10.1016/0167-4889(86)90103-5. [DOI] [PubMed] [Google Scholar]
- Wang C. N., Chen J. C., Shiao M. S., Wang C. T. The aggregation of human platelet induced by ganodermic acid S. Biochim Biophys Acta. 1989 Nov 17;986(1):151–160. doi: 10.1016/0005-2736(89)90285-x. [DOI] [PubMed] [Google Scholar]
- Wilson D. B., Neufeld E. J., Majerus P. W. Phosphoinositide interconversion in thrombin-stimulated human platelets. J Biol Chem. 1985 Jan 25;260(2):1046–1051. [PubMed] [Google Scholar]


