Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Jul 1;277(Pt 1):189–197. doi: 10.1042/bj2770189

The inhibition of human platelet function by ganodermic acids.

C N Wang 1, J C Chen 1, M S Shiao 1, C T Wang 1
PMCID: PMC1151209  PMID: 1649599

Abstract

Human gel-filtered platelets aggregate at greater than 20 microM-ganodermic acid S [lanosta-7,9(11),24-triene-3 beta, 15 alpha-diacetoxy-26-oic acid] [Wang, Chen, Shiao & Wang (1989) Biochim. Biophys. Acta 986, 151-160]. This study showed that platelets at less than 20 microM-ganodermic acid S displayed both concentration- and time-dependent inhibition of function, in which the agent potency in response to inducers was ADP-fibrinogen greater than collagen greater than thrombin. The agent caused a biphasic time-dependent effect on platelet phosphoinositide metabolism. The first phase involved the decrease in the pool size of phosphoinositide by 10-20%. The second phase, in which both the resynthesis of phosphatidylinositol 4,5-bisphosphate (PIP2) and the decrease of [32P]phosphatidic acid occurred, took place after 30 min. Scanning electron microscopy also revealed a time-dependent morphological change in platelets in the presence of the agent. The cells initially became spiculate discs, then swelled to a 'potato-like' morphology at 60 min. Further studies on the time-dependent inhibition of thrombin response revealed that: (1) the percentage inhibition of cell aggregation was comparable with that occurring with an increase of cytosolic free Ca2+ concentration [( Ca2+]i) or the phosphorylation of marker proteins; (2) [32P]Pi-labelled platelets showed the time-dependent inhibition of thrombin-stimulated PIP2 resynthesis as indicated by first-2-min time-course studies of phosphoinositide interconversion; (3) scanning electron microscopy revealed that the aged platelet population showed an increase in the percentage of non-responding cells on prolonged incubation. The results, taken together, enabled one to discuss a possible mechanism for the time-dependent inhibition by ganodermic acid S of platelet response to thrombin.

Full text

PDF
189

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett J. S., Vilaire G. Exposure of platelet fibrinogen receptors by ADP and epinephrine. J Clin Invest. 1979 Nov;64(5):1393–1401. doi: 10.1172/JCI109597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Billah M. M., Lapetina E. G. Rapid decrease of phosphatidylinositol 4,5-bisphosphate in thrombin-stimulated platelets. J Biol Chem. 1982 Nov 10;257(21):12705–12708. [PubMed] [Google Scholar]
  3. Chalvardjian A., Rudnicki E. Determination of lipid phosphorus in the nanomolar range. Anal Biochem. 1970 Jul;36(1):225–226. doi: 10.1016/0003-2697(70)90352-0. [DOI] [PubMed] [Google Scholar]
  4. Colman R. W. Platelet activation: role of an ADP receptor. Semin Hematol. 1986 Apr;23(2):119–128. [PubMed] [Google Scholar]
  5. Ferrell J. E., Jr, Huestis W. H. Phosphoinositide metabolism and the morphology of human erythrocytes. J Cell Biol. 1984 Jun;98(6):1992–1998. doi: 10.1083/jcb.98.6.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferrell J. E., Jr, Mitchell K. T., Huestis W. H. Membrane bilayer balance and platelet shape: morphological and biochemical responses to amphipathic compounds. Biochim Biophys Acta. 1988 Apr 7;939(2):223–237. doi: 10.1016/0005-2736(88)90066-1. [DOI] [PubMed] [Google Scholar]
  7. Hanasaki K., Nakano T., Arita H. Biphasic action of phospholipase A in collagen-stimulated rat platelets. J Biochem. 1987 Jul;102(1):5–8. doi: 10.1093/oxfordjournals.jbchem.a122040. [DOI] [PubMed] [Google Scholar]
  8. Holmsen H., Dangelmaier C. A., Akkerman J. W. Determination of levels of glycolytic intermediates and nucleotides in platelets by pulse-labeling with [32P]orthophosphate. Anal Biochem. 1983 May;131(1):266–272. doi: 10.1016/0003-2697(83)90165-3. [DOI] [PubMed] [Google Scholar]
  9. Holmsen H., Dangelmaier C. A., Rongved S. Tight coupling of thrombin-induced acid hydrolase secretion and phosphatidate synthesis to receptor occupancy in human platelets. Biochem J. 1984 Aug 15;222(1):157–167. doi: 10.1042/bj2220157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kanaho Y., Fujii T. Effect of some amphiphilic drugs on the membrane morphology and aggregation of rabbit platelets. Biochem Biophys Res Commun. 1982 May 31;106(2):513–519. doi: 10.1016/0006-291x(82)91140-8. [DOI] [PubMed] [Google Scholar]
  11. Lages B., Scrutton M. C., Holmsen H. Studies on gel-filtered human platelets: isolation and characterization in a medium containing no added Ca2+, Mg2+, or K+. J Lab Clin Med. 1975 May;85(5):811–825. [PubMed] [Google Scholar]
  12. Marguerie G. A., Plow E. F., Edgington T. S. Human platelets possess an inducible and saturable receptor specific for fibrinogen. J Biol Chem. 1979 Jun 25;254(12):5357–5363. [PubMed] [Google Scholar]
  13. Mauco G., Dangelmaier C. A., Smith J. B. Inositol lipids, phosphatidate and diacylglycerol share stearoylarachidonoylglycerol as a common backbone in thrombin-stimulated human platelets. Biochem J. 1984 Dec 15;224(3):933–940. doi: 10.1042/bj2240933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nachmias V. T., Sullender J. S., Fallon J. R. Effects of local anesthetics on human platelets: filopodial suppression and endogenous proteolysis. Blood. 1979 Jan;53(1):63–72. [PubMed] [Google Scholar]
  15. Nakano T., Hanasaki K., Arita H. Possible involvement of cytoskeleton in collagen-stimulated activation of phospholipases in human platelets. J Biol Chem. 1989 Apr 5;264(10):5400–5406. [PubMed] [Google Scholar]
  16. Nakano T., Terawaki A., Arita H. Measurement of thromboxane A2-induced elevation of ionized calcium in collagen-stimulated platelets with the photoprotein, aequorin. J Biochem. 1986 Apr;99(4):1285–1288. doi: 10.1093/oxfordjournals.jbchem.a135594. [DOI] [PubMed] [Google Scholar]
  17. Nakano T., Terawaki A., Arita H. Signal transduction in collagen-stimulated rat platelets is composed of three stages. J Biochem. 1987 May;101(5):1169–1180. doi: 10.1093/oxfordjournals.jbchem.a121981. [DOI] [PubMed] [Google Scholar]
  18. Peerschke E. I., Zucker M. B., Grant R. A., Egan J. J., Johnson M. M. Correlation between fibrinogen binding to human platelets and platelet aggregability. Blood. 1980 May;55(5):841–847. [PubMed] [Google Scholar]
  19. Pollock W. K., Rink T. J., Irvine R. F. Liberation of [3H]arachidonic acid and changes in cytosolic free calcium in fura-2-loaded human platelets stimulated by ionomycin and collagen. Biochem J. 1986 May 1;235(3):869–877. doi: 10.1042/bj2350869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sano K., Takai Y., Yamanishi J., Nishizuka Y. A role of calcium-activated phospholipid-dependent protein kinase in human platelet activation. Comparison of thrombin and collagen actions. J Biol Chem. 1983 Feb 10;258(3):2010–2013. [PubMed] [Google Scholar]
  21. Shiao Y. J., Chen J. C., Wang C. T. The solubilization and morphological change of human platelets in various detergents. Biochim Biophys Acta. 1989 Mar 27;980(1):56–68. doi: 10.1016/0005-2736(89)90200-9. [DOI] [PubMed] [Google Scholar]
  22. Steen V. M., Tysnes O. B., Holmsen H. Synergism between thrombin and adrenaline (epinephrine) in human platelets. Marked potentiation of inositol phospholipid metabolism. Biochem J. 1988 Jul 15;253(2):581–586. doi: 10.1042/bj2530581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tsai W. J., Chen J. C., Wang C. T. Changes in both calcium pool size and morphology of human platelets incubated in various concentrations of calcium ion. Calcium-specific bleb formation on platelet-membrane surface. Biochim Biophys Acta. 1988 May 9;940(1):105–120. doi: 10.1016/0005-2736(88)90014-4. [DOI] [PubMed] [Google Scholar]
  24. Tysnes O. B., Verhoeven A. J., Holmsen H. Phosphate turnover of phosphatidylinositol in resting and thrombin-stimulated platelets. Biochim Biophys Acta. 1986 Nov 28;889(2):183–191. doi: 10.1016/0167-4889(86)90103-5. [DOI] [PubMed] [Google Scholar]
  25. Wang C. N., Chen J. C., Shiao M. S., Wang C. T. The aggregation of human platelet induced by ganodermic acid S. Biochim Biophys Acta. 1989 Nov 17;986(1):151–160. doi: 10.1016/0005-2736(89)90285-x. [DOI] [PubMed] [Google Scholar]
  26. Wilson D. B., Neufeld E. J., Majerus P. W. Phosphoinositide interconversion in thrombin-stimulated human platelets. J Biol Chem. 1985 Jan 25;260(2):1046–1051. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES