Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Jul 1;277(Pt 1):199–206. doi: 10.1042/bj2770199

Proteoglycans synthesized by an osteoblast-like cell line (UMR 106-01).

D J McQuillan 1, D M Findlay 1, A M Hocking 1, M Yanagishita 1, R J Midura 1, V C Hascall 1
PMCID: PMC1151210  PMID: 1906708

Abstract

The proteoglycans synthesized by an osteoblast-like cell line of rat origin (UMR 106-01) were defined after biosynthetic labelling with [35S]sulphate and [3H]glucosamine. Newly synthesized labelled proteoglycans were characterized by differential enzymic digestion in combination with analytical gel filtration and SDS/PAGE. UMR 106-01 cells were found to synthesize three major species of proteoglycan: a large chondroitin sulphate proteoglycan of Mr approximately 1 x 10(6), with a core protein of Mr approximately 350,000-400,000; a small chondroitin sulphate-containing species of Mr approximately 120,000 with a core protein of Mr 43,000; and a heparan sulphate proteoglycan of Mr approximately 150,000, with a core protein of Mr approximately 80,000. Over 70% of the newly synthesized intact proteoglycan species are associated with the cell layer of near-confluent cells; however, accessibility to trypsin digestion suggests an extracellular location. Chemical characteristics of the proteoglycans and preliminary mRNA hybridization indicate that the small chondroitin sulphate proteoglycan is probably PG II (decorin). The large chondroitin sulphate proteoglycan is most likely related to a hyaluronate-aggregating species from fibroblasts (versican), and the heparan sulphate proteoglycan bears striking similarities to cell-membrane-intercalated species described for a number of cell types.

Full text

PDF
199

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beresford J. N., Fedarko N. S., Fisher L. W., Midura R. J., Yanagishita M., Termine J. D., Robey P. G. Analysis of the proteoglycans synthesized by human bone cells in vitro. J Biol Chem. 1987 Dec 15;262(35):17164–17172. [PubMed] [Google Scholar]
  2. Carlson D. M. Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J Biol Chem. 1968 Feb 10;243(3):616–626. [PubMed] [Google Scholar]
  3. Chen C. C., Boskey A. L. Mechanisms of proteoglycan inhibition of hydroxyapatite growth. Calcif Tissue Int. 1985 Jul;37(4):395–400. doi: 10.1007/BF02553709. [DOI] [PubMed] [Google Scholar]
  4. Ecarot-Charrier B., Broekhuyse H. Proteoglycans synthesized by cultured mouse osteoblasts. J Biol Chem. 1987 Apr 15;262(11):5345–5351. [PubMed] [Google Scholar]
  5. Fisher L. W., Hawkins G. R., Tuross N., Termine J. D. Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. J Biol Chem. 1987 Jul 15;262(20):9702–9708. [PubMed] [Google Scholar]
  6. Fisher L. W., Termine J. D., Dejter S. W., Jr, Whitson S. W., Yanagishita M., Kimura J. H., Hascall V. C., Kleinman H. K., Hassell J. R., Nilsson B. Proteoglycans of developing bone. J Biol Chem. 1983 May 25;258(10):6588–6594. [PubMed] [Google Scholar]
  7. Fisher L. W., Termine J. D., Young M. F. Deduced protein sequence of bone small proteoglycan I (biglycan) shows homology with proteoglycan II (decorin) and several nonconnective tissue proteins in a variety of species. J Biol Chem. 1989 Mar 15;264(8):4571–4576. [PubMed] [Google Scholar]
  8. Forrest S. M., Ng K. W., Findlay D. M., Michelangeli V. P., Livesey S. A., Partridge N. C., Zajac J. D., Martin T. J. Characterization of an osteoblast-like clonal cell line which responds to both parathyroid hormone and calcitonin. Calcif Tissue Int. 1985 Jan;37(1):51–56. doi: 10.1007/BF02557679. [DOI] [PubMed] [Google Scholar]
  9. Hascall V. C., Kimura J. H. Proteoglycans: isolation and characterization. Methods Enzymol. 1982;82(Pt A):769–800. doi: 10.1016/0076-6879(82)82102-2. [DOI] [PubMed] [Google Scholar]
  10. Hunter G. K., Heersche J. N., Aubin J. E. Isolation of three species of proteoglycan synthesized by cloned bone cells. Biochemistry. 1983 Feb 15;22(4):831–837. doi: 10.1021/bi00273a019. [DOI] [PubMed] [Google Scholar]
  11. Hunter G. K., Heersche J. N., Aubin J. E. Proteoglycan synthesis and deposition in fetal rat bone. Biochemistry. 1984 Mar 27;23(7):1572–1576. doi: 10.1021/bi00302a035. [DOI] [PubMed] [Google Scholar]
  12. Hök M., Kjellén L., Johansson S. Cell-surface glycosaminoglycans. Annu Rev Biochem. 1984;53:847–869. doi: 10.1146/annurev.bi.53.070184.004215. [DOI] [PubMed] [Google Scholar]
  13. Kato M., Oike Y., Suzuki S., Kimata K. Selective removal of heparan sulfate chains from proteoheparan sulfate with a commercial preparation of heparitinase. Anal Biochem. 1985 Aug 1;148(2):479–484. doi: 10.1016/0003-2697(85)90255-6. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Liu C. P., Slate D. L., Gravel R., Ruddle F. H. Biological detection of specific mRNA molecules by microinjection. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4503–4506. doi: 10.1073/pnas.76.9.4503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Midura R. J., Hascall V. C. Analysis of the proteoglycans synthesized by corneal explants from embryonic chicken. II. Structural characterization of the keratan sulfate and dermatan sulfate proteoglycans from corneal stroma. J Biol Chem. 1989 Jan 25;264(3):1423–1430. [PubMed] [Google Scholar]
  17. Midura R. J., McQuillan D. J., Benham K. J., Fisher L. W., Hascall V. C. A rat osteogenic cell line (UMR 106-01) synthesizes a highly sulfated form of bone sialoprotein. J Biol Chem. 1990 Mar 25;265(9):5285–5291. [PubMed] [Google Scholar]
  18. Neame P. J., Choi H. U., Rosenberg L. C. The primary structure of the core protein of the small, leucine-rich proteoglycan (PG I) from bovine articular cartilage. J Biol Chem. 1989 May 25;264(15):8653–8661. [PubMed] [Google Scholar]
  19. Oike Y., Kimata K., Shinomura T., Nakazawa K., Suzuki S. Structural analysis of chick-embryo cartilage proteoglycan by selective degradation with chondroitin lyases (chondroitinases) and endo-beta-D-galactosidase (keratanase). Biochem J. 1980 Oct 1;191(1):193–207. doi: 10.1042/bj1910193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Partridge N. C., Alcorn D., Michelangeli V. P., Ryan G., Martin T. J. Morphological and biochemical characterization of four clonal osteogenic sarcoma cell lines of rat origin. Cancer Res. 1983 Sep;43(9):4308–4314. [PubMed] [Google Scholar]
  21. Partridge N. C., Opie A. L., Opie R. T., Martin T. J. Inhibitory effects of parathyroid hormone on growth of osteogenic sarcoma cells. Calcif Tissue Int. 1985 Sep;37(5):519–525. doi: 10.1007/BF02557835. [DOI] [PubMed] [Google Scholar]
  22. Piechaczyk M., Blanchard J. M., Marty L., Dani C., Panabieres F., El Sabouty S., Fort P., Jeanteur P. Post-transcriptional regulation of glyceraldehyde-3-phosphate-dehydrogenase gene expression in rat tissues. Nucleic Acids Res. 1984 Sep 25;12(18):6951–6963. doi: 10.1093/nar/12.18.6951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Saito H., Yamagata T., Suzuki S. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J Biol Chem. 1968 Apr 10;243(7):1536–1542. [PubMed] [Google Scholar]
  24. Sugahara K., Ho P. L., Dorfman A. Chemical and immunological characterization of proteoglycans of embryonic chick calvaria. Dev Biol. 1981 Jul 15;85(1):180–189. doi: 10.1016/0012-1606(81)90248-7. [DOI] [PubMed] [Google Scholar]
  25. Wake S. A., Mercer J. F. Induction of metallothionein mRNA in rat liver and kidney after copper chloride injection. Biochem J. 1985 Jun 1;228(2):425–432. doi: 10.1042/bj2280425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wasteson A. A method for the determination of the molecular weight and molecular-weight distribution of chondroitin sulphate. J Chromatogr. 1971 Jul 8;59(1):87–97. doi: 10.1016/s0021-9673(01)80009-1. [DOI] [PubMed] [Google Scholar]
  27. Yanagishita M., Brandi M. L., Sakaguchi K. Characterization of proteoglycans synthesized by a rat parathyroid cell line. J Biol Chem. 1989 Sep 15;264(26):15714–15720. [PubMed] [Google Scholar]
  28. Yanagishita M., Hascall V. C. Characterization of low buoyant density dermatan sulfate proteoglycans synthesized by rat ovarian granulosa cells in culture. J Biol Chem. 1983 Nov 10;258(21):12847–12856. [PubMed] [Google Scholar]
  29. Yanagishita M., Hascall V. C. Metabolism of proteoglycans in rat ovarian granulosa cell culture. Multiple intracellular degradative pathways and the effect of chloroquine. J Biol Chem. 1984 Aug 25;259(16):10270–10283. [PubMed] [Google Scholar]
  30. Yanagishita M., McQuillan D. J. Two forms of plasma membrane-intercalated heparan sulfate proteoglycan in rat ovarian granulosa cells. Labeling of proteoglycans with a photoactivatable hydrophobic probe and effect of the membrane anchor-specific phospholipase C. J Biol Chem. 1989 Oct 15;264(29):17551–17558. [PubMed] [Google Scholar]
  31. Zebrower M. E., Kieras F. J., Brown W. T. Analysis by high-performance liquid chromatography of hyaluronic acid and chondroitin sulfates. Anal Biochem. 1986 Aug 15;157(1):93–99. doi: 10.1016/0003-2697(86)90201-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES