Abstract
Endo-1,4-beta-xylanase (EC 3.2.1.8) was isolated from the culture supernatant of Thermotoga sp. strain FjSS3-B.1, an extremely thermophilic anaerobic eubacterium which grows optimally at 80 degrees C. Activity was purified 165-fold by anion-exchange and hydroxyapatite chromatography. The enzyme has an Mr of 31,000 as determined by SDS/PAGE and 35,000 by analytical gel filtration. The optima for activity and stability for purified xylanase were between pH 5.0 and 5.5. At pH 5.5, which is the optimum pH for thermostability, t1/2 (95 degrees C) is 90 min. The thermostability was improved by immobilization of the xylanase on to porous glass beads; t1/2 (105 degrees C) is 10 min. Several additives, such as sorbitol and xylan, were also found to increase the thermostability. At 130 degrees C, the half-life of immobilized xylanase in the presence of 90% sorbitol was 1.3 min. At 130 degrees C in molten sorbitol half of the enzyme denatured rapidly, but the remainder appeared to have a half-life of about 60 min.
Full text
PDF![413](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0648/1151249/624368070b3e/biochemj00155-0117.png)
![414](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0648/1151249/28032ab33df9/biochemj00155-0118.png)
![415](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0648/1151249/5fa99fde41cb/biochemj00155-0119.png)
![416](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0648/1151249/2678708f7e3a/biochemj00155-0120.png)
![417](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0648/1151249/fa4df1281868/biochemj00155-0121.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahern T. J., Klibanov A. M. The mechanisms of irreversible enzyme inactivation at 100C. Science. 1985 Jun 14;228(4705):1280–1284. doi: 10.1126/science.4001942. [DOI] [PubMed] [Google Scholar]
- Aono S., Bryant F. O., Adams M. W. A novel and remarkably thermostable ferredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Bacteriol. 1989 Jun;171(6):3433–3439. doi: 10.1128/jb.171.6.3433-3439.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biely P., Mislovicová D., Toman R. Soluble chromogenic substrates for the assay of endo-1,4-beta-xylanases and endo-1,4-beta-glucanases. Anal Biochem. 1985 Jan;144(1):142–146. doi: 10.1016/0003-2697(85)90095-8. [DOI] [PubMed] [Google Scholar]
- Combes D., Yoovidhya T., Girbal E., Willemot R. M., Monsan P. Mechanism of enzyme stabilization. Ann N Y Acad Sci. 1987;501:59–62. doi: 10.1111/j.1749-6632.1987.tb45684.x. [DOI] [PubMed] [Google Scholar]
- Cowan D. A., Smolenski K. A., Daniel R. M., Morgan H. W. An extremely thermostable extracellular proteinase from a strain of the archaebacterium Desulfurococcus growing at 88 degrees C. Biochem J. 1987 Oct 1;247(1):121–133. doi: 10.1042/bj2470121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabel D. The denaturation by urea and guanidinium chloride of trypsin and N-acetylated-trypsin derivatives bound to Sephadex and agarose. Eur J Biochem. 1973 Mar 1;33(2):348–356. doi: 10.1111/j.1432-1033.1973.tb02689.x. [DOI] [PubMed] [Google Scholar]
- Gekko K., Timasheff S. N. Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry. 1981 Aug 4;20(16):4677–4686. doi: 10.1021/bi00519a024. [DOI] [PubMed] [Google Scholar]
- Klibanov A. M., Samokhin G. P., Martinek K., Berezin I. V. Enzymatic mechanochemistry: a new approach to studying the mechanism of enzyme action. Biochim Biophys Acta. 1976 Jun 7;438(1):1–12. doi: 10.1016/0005-2744(76)90218-7. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lever M. Colorimetric and fluorometric carbohydrate determination with p-hydroxybenzoic acid hydrazide. Biochem Med. 1973 Apr;7(2):274–281. doi: 10.1016/0006-2944(73)90083-5. [DOI] [PubMed] [Google Scholar]
- Matsunaga A., Noso Y. Conformational change with temperature and thermostability of glutamine synthetase from Bacillus stearothermophilus. Biochim Biophys Acta. 1974 Sep 13;365(1):208–211. doi: 10.1016/0005-2795(74)90265-7. [DOI] [PubMed] [Google Scholar]
- Moore T. A., Greenwood C. A method for investigating the effect of temperature on the 695 nm band of insoluble cytochrome c. Biochem J. 1975 Jul;149(1):169–177. doi: 10.1042/bj1490169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patchett M. L., Daniel R. M., Morgan H. W. Purification and properties of a stable beta-glucosidase from an extremely thermophilic anaerobic bacterium. Biochem J. 1987 May 1;243(3):779–787. doi: 10.1042/bj2430779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simpson H. D., Green J., Dalton H. Purification and some properties of a novel heat-stable cis-toluene dihydrodiol dehydrogenase. Biochem J. 1987 Jun 15;244(3):585–590. doi: 10.1042/bj2440585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Solomon B., Hollander Z., Koppel R., Katchalski-Katzir E. Use of monoclonal antibodies for the preparation of highly active immobilized enzymes. Methods Enzymol. 1987;135:160–170. doi: 10.1016/0076-6879(87)35074-8. [DOI] [PubMed] [Google Scholar]
- Stolzenbach F. E., Kaplan N. O. Immobilization of lactic dehydrogenase. Methods Enzymol. 1976;44:929–936. doi: 10.1016/s0076-6879(76)44066-1. [DOI] [PubMed] [Google Scholar]
- Trent J. D., Chastain R. A., Yayanos A. A. Possible artefactual basis for apparent bacterial growth at 250 degrees C. Nature. 1984 Feb 23;307(5953):737–740. doi: 10.1038/307737a0. [DOI] [PubMed] [Google Scholar]
- White R. H. Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250 degrees C. Nature. 1984 Aug 2;310(5976):430–432. doi: 10.1038/310430a0. [DOI] [PubMed] [Google Scholar]
- Wrba A., Jaenicke R., Huber R., Stetter K. O. Lactate dehydrogenase from the extreme thermophile Thermotoga maritima. Eur J Biochem. 1990 Feb 22;188(1):195–201. doi: 10.1111/j.1432-1033.1990.tb15388.x. [DOI] [PubMed] [Google Scholar]
- Zaks A., Klibanov A. M. Enzymatic catalysis in nonaqueous solvents. J Biol Chem. 1988 Mar 5;263(7):3194–3201. [PubMed] [Google Scholar]
- Zaks A., Klibanov A. M. Enzymatic catalysis in organic media at 100 degrees C. Science. 1984 Jun 15;224(4654):1249–1251. doi: 10.1126/science.6729453. [DOI] [PubMed] [Google Scholar]