Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Jul 15;277(Pt 2):423–427. doi: 10.1042/bj2770423

The oligomeric structure of rat and human gastric mucins.

J Dekker 1, P H Aelmans 1, G J Strous 1
PMCID: PMC1151251  PMID: 1859370

Abstract

Intact oligomeric gastric mucins were isolated from the fundic part of rat and human stomach. Physicochemical properties of the oligomeric mucins from both species, such as buoyant density, molecular mass, proteinase-resistance, amino acid composition and monosaccharide composition were similar. Biochemical analysis showed that the oligomeric mucins from both species consist of disulphide-linked mucin monomers exclusively: no other covalently attached proteins were detected in purified monomeric mucin. Four major differences were found between the monomeric mucins of these species: (1) the human monomer is larger, (2) the proteolytic-digest peptides derived from proteinase-sensitive portions of the polypeptide backbone displayed no sequence similarity, (3) the human mucin was less sulphated compared with rat mucin, and (4) the proteinase-sensitive part of the human mucin was relatively larger. However, analyses of [3H]galactose-labelled mucin from both species on gel filtration revealed that both gastric mucins were exclusively synthesized as oligomers. The results indicate that the oligomeric structures of human and rat gastric mucin are similar and their biosyntheses are not affected by the differences in the subunits.

Full text

PDF
423

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen A., Bell A., Mantle M., Pearson J. P. The structure and physiology of gastrointestinal mucus. Adv Exp Med Biol. 1982;144:115–133. doi: 10.1007/978-1-4615-9254-9_15. [DOI] [PubMed] [Google Scholar]
  2. Carlstedt I., Lindgren H., Sheehan J. K., Ulmsten U., Wingerup L. Isolation and characterization of human cervical-mucus glycoproteins. Biochem J. 1983 Apr 1;211(1):13–22. doi: 10.1042/bj2110013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carlstedt I., Sheehan J. K. Macromolecular properties and polymeric structure of mucus glycoproteins. Ciba Found Symp. 1984;109:157–172. doi: 10.1002/9780470720905.ch11. [DOI] [PubMed] [Google Scholar]
  4. Dekker J., Strous G. J. Covalent oligomerization of rat gastric mucin occurs in the rough endoplasmic reticulum, is N-glycosylation-dependent, and precedes initial O-glycosylation. J Biol Chem. 1990 Oct 25;265(30):18116–18122. [PubMed] [Google Scholar]
  5. Dekker J., Van Beurden-Lamers W. M., Oprins A., Strous G. J. Isolation and structural analysis of rat gastric mucus glycoprotein suggests a homogeneous protein backbone. Biochem J. 1989 Jun 15;260(3):717–723. doi: 10.1042/bj2600717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dekker J., Van Beurden-Lamers W. M., Strous G. J. Biosynthesis of gastric mucus glycoprotein of the rat. J Biol Chem. 1989 Jun 25;264(18):10431–10437. [PubMed] [Google Scholar]
  7. FRANCOIS C., MARSHALL R. D., NEUBERGER A. Carbohydrates in protein. 4. The determination of mannose in hen's-egg albumin by radioisotope dilution. Biochem J. 1962 May;83:335–341. doi: 10.1042/bj0830335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fouad F. M., Waldron-Edward D. Isolation and characterization of human and canine gastric mucosal glycoproteins and their degradation by proteases and acid hydrolases. Hoppe Seylers Z Physiol Chem. 1980 May;361(5):703–713. doi: 10.1515/bchm2.1980.361.1.703. [DOI] [PubMed] [Google Scholar]
  9. Kamerling J. P., Gerwig G. J., Vliegenthart J. F., Clamp J. R. Characterization by gas-liquid chromatography-mass spectrometry and proton-magnetic-resonance spectroscopy of pertrimethylsilyl methyl glycosides obtained in the methanolysis of glycoproteins and glycopeptides. Biochem J. 1975 Dec;151(3):491–495. doi: 10.1042/bj1510491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Roussel P., Lamblin G., Lhermitte M., Houdret N., Lafitte J. J., Perini J. M., Klein A., Scharfman A. The complexity of mucins. Biochimie. 1988 Nov;70(11):1471–1482. doi: 10.1016/0300-9084(88)90284-2. [DOI] [PubMed] [Google Scholar]
  12. Sellers L. A., Allen A., Morris E. R., Ross-Murphy S. B. Mucus glycoprotein gels. Role of glycoprotein polymeric structure and carbohydrate side-chains in gel-formation. Carbohydr Res. 1988 Jul 15;178:93–110. doi: 10.1016/0008-6215(88)80104-6. [DOI] [PubMed] [Google Scholar]
  13. Sheehan J. K., Oates K., Carlstedt I. Electron microscopy of cervical, gastric and bronchial mucus glycoproteins. Biochem J. 1986 Oct 1;239(1):147–153. doi: 10.1042/bj2390147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Silvestri L. J., Hurst R. E., Simpson L., Settine J. M. Analysis of sulfate in complex carbohydrates. Anal Biochem. 1982 Jul 1;123(2):303–309. doi: 10.1016/0003-2697(82)90450-x. [DOI] [PubMed] [Google Scholar]
  15. Slomiany A., Zdebska E., Slomiany B. L. Structures of the neutral oligosaccharides isolated from A-active human gastric mucin. J Biol Chem. 1984 Dec 10;259(23):14743–14749. [PubMed] [Google Scholar]
  16. Slomiany B. L., Zdebska E., Slomiany A. Structural characterization of neutral oligosaccharides of human H+Leb+ gastric mucin. J Biol Chem. 1984 Mar 10;259(5):2863–2869. [PubMed] [Google Scholar]
  17. van Beurden-Lamers W. M., Spee-Brand R., Dekker J., Strous G. J. Sulphation causes heterogeneity of gastric mucins. Biochim Biophys Acta. 1989 Mar 24;990(3):232–239. doi: 10.1016/s0304-4165(89)80039-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES