Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Jul 15;277(Pt 2):483–492. doi: 10.1042/bj2770483

Properties and structural requirements for substrate specificity of cytochrome P-450-dependent obtusifoliol 14 alpha-demethylase from maize (Zea mays) seedlings.

M Taton 1, A Rahier 1
PMCID: PMC1151260  PMID: 1859375

Abstract

The biochemical properties of cytochrome P-450-dependent obtusifoliol 14 alpha-demthylase (P-450OBT.14DM) from maize (Zea mays) seedlings were defined. In particular, the enzyme was shown by differential centrifugation to be localized in the endoplasmic reticulum. P-450OBT.14DM had an apparent Km of 160 +/- 5 microM and an apparent Vmax of 65 +/- 5 pmol/min per mg of protein for its best substrate, obtusifoliol. The substrate specificity of P-450OBT.14DM was thoroughly investigated by comparing the demethylation of obtusifoliol with that of a series of 15 natural or novel synthetic analogues of obtusifoliol. The results obtained clearly indicate that three distinct domains of the sterol substrate are governing obtusifoliol demethylation by P-450OBT.14DM. They revealed that (i) P-450OBT.14DM has probably a specific apolar binding site for the side chain, (ii) the delta 8-double bond is an absolute requirement for substrate demethylation and (iii) the 3-hydroxy group plays a critical role in the enzyme-substrate interaction. Interestingly the binding site, beyond the C-3 position, contains a cleft which cannot accommodate a 4 beta-methyl substituent present in lanosterol or eburicol, the precursors of 14-desmethylsterols respectively in mammals and yeast. This result indicates that P-450OBT.14DM is a novel constitutive cytochrome P-450 with a high degree of substrate and product specificity.

Full text

PDF
483

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aoyama Y., Yoshida Y., Nishino T., Katsuki H., Maitra U. S., Mohan V. P., Sprinson D. B. Isolation and characterization of an altered cytochrome P-450 from a yeast mutant defective in lanosterol 14 alpha-demethylation. J Biol Chem. 1987 Oct 15;262(29):14260–14264. [PubMed] [Google Scholar]
  2. Galli-Kienle M., Anastasia M., Cighetti G., Galli G., Fiecchi A. Studies on the 14 alpha-demethylation mechanism in cholesterol biosynthesis. Eur J Biochem. 1980 Sep;110(1):93–105. doi: 10.1111/j.1432-1033.1980.tb04844.x. [DOI] [PubMed] [Google Scholar]
  3. Gibbons G. F., Goad L. J., Goodwin T. W., Nes W. R. Concerning the role of lanosterol and cycloartenol in steroid biosynthesis. J Biol Chem. 1971 Jun 25;246(12):3967–3976. [PubMed] [Google Scholar]
  4. Gibbons G. F., Mitropoulos K. A., Pullinger C. R. Lanosterol 14alpha-demethylase. The metabolism of some potential intermediates by cell-free systems from rat liver. Biochem Biophys Res Commun. 1976 Apr 5;69(3):781–789. doi: 10.1016/0006-291x(76)90943-8. [DOI] [PubMed] [Google Scholar]
  5. Hasson E. P., West C. A. Properties of the System for the Mixed Function Oxidation of Kaurene and Kaurene Derivatives in Microsomes of the Immature Seed of Marah macrocarpus: Electron Transfer Components. Plant Physiol. 1976 Oct;58(4):479–484. doi: 10.1104/pp.58.4.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heintz R., Benveniste P. Plant sterol metabolism. Enzymatic cleavage of the 9beta, 19beta-cyclopropane ring of cyclopropyl sterols in bramble tissue cultures. J Biol Chem. 1974 Jul 10;249(13):4267–4274. [PubMed] [Google Scholar]
  7. Hewlins M. J., Ehrhardt J. D., Hirth L., Ourisson G. The conversion of [14C]cycloartenol and [14C)lanosterol into phytosterols by cultures of Nicotiana tabacum. Eur J Biochem. 1969 Mar;8(2):184–188. doi: 10.1111/j.1432-1033.1969.tb00513.x. [DOI] [PubMed] [Google Scholar]
  8. Hitchcock C. A., Brown S. B., Evans E. G., Adams D. J. Cytochrome P-450-dependent 14 alpha-demethylation of lanosterol in Candida albicans. Biochem J. 1989 Jun 1;260(2):549–556. doi: 10.1042/bj2600549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hosoda H., Fukushima D. K., Fishman J. Convenient, high yield conversion of androst-5-ene-3'beta, 17beta-diol to dehydroisoandroster-one. J Org Chem. 1973 Nov 30;38(24):4209–4211. doi: 10.1021/jo00963a028. [DOI] [PubMed] [Google Scholar]
  10. Lindberg R. L., Negishi M. Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature. 1989 Jun 22;339(6226):632–634. doi: 10.1038/339632a0. [DOI] [PubMed] [Google Scholar]
  11. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  12. Potts J. R., Weklych R., Conn E. E., Rowell J. The 4-hydroxylation of cinnamic acid by sorghum microsomes and the requirement for cytochrome P-450. J Biol Chem. 1974 Aug 25;249(16):5019–5026. [PubMed] [Google Scholar]
  13. Rahier A., Génot J. C., Schuber F., Benveniste P., Narula A. S. Inhibition of S-adenosyl-L-methionine sterol-C-24-methyltransferase by analogues of a carbocationic ion high-energy intermediate. Structure activity relationships for C-25 heteroatoms (N, As, S) substituted triterpenoid derivatives. J Biol Chem. 1984 Dec 25;259(24):15215–15223. [PubMed] [Google Scholar]
  14. Rahier A., Taton M., Benveniste P. Cycloeucalenol-obtusifoliol isomerase. Structural requirements for transformation or binding of substrates and inhibitors. Eur J Biochem. 1989 May 15;181(3):615–626. doi: 10.1111/j.1432-1033.1989.tb14768.x. [DOI] [PubMed] [Google Scholar]
  15. Rahier A., Taton M. Plant sterol biosynthesis inhibitors: the 14-demethylation steps, their enzymology and inhibition. Biochem Soc Trans. 1990 Feb;18(1):52–56. doi: 10.1042/bst0180052. [DOI] [PubMed] [Google Scholar]
  16. Rahier A., Taton M. The 14 alpha-demethylation of obtusifoliol by a cytochrome P-450 monooxygenase from higher plants' microsomes. Biochem Biophys Res Commun. 1986 Nov 14;140(3):1064–1072. doi: 10.1016/0006-291x(86)90743-6. [DOI] [PubMed] [Google Scholar]
  17. Russell D. W. The metabolism of aromatic compounds in higer plants. X. Properties of the cinnamic acid 4-hydroxylase of pea seedlings and some aspects of its metabolic and developmental control. J Biol Chem. 1971 Jun 25;246(12):3870–3878. [PubMed] [Google Scholar]
  18. Russell P. T., Van Aller R. T., Nes W. R. The mechanism of introduction of alkyl groups at C-24 of sterols. II. The necessity of the delta-24 bond. J Biol Chem. 1967 Dec 25;242(23):5802–5806. [PubMed] [Google Scholar]
  19. Saunders J. A., Conn E. E., Lin C. H., Shimada M. Localization of Cinnamic Acid 4-Monooxygenase and the Membrane-bound Enzyme System for Dhurrin Biosynthesis in Sorghum Seedlings. Plant Physiol. 1977 Oct;60(4):629–634. doi: 10.1104/pp.60.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schacterle G. R., Pollack R. L. A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal Biochem. 1973 Feb;51(2):654–655. doi: 10.1016/0003-2697(73)90523-x. [DOI] [PubMed] [Google Scholar]
  21. Shafiee A., Trzaskos J. M., Paik Y. K., Gaylor J. L. Oxidative demethylation of lanosterol in cholesterol biosynthesis: accumulation of sterol intermediates. J Lipid Res. 1986 Jan;27(1):1–10. [PubMed] [Google Scholar]
  22. Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Taton M., Benveniste P., Rahier A. Microsomal delta 8,14-sterol delta 14-reductase in higher plants. Characterization and inhibition by analogues of a presumptive carbocationic intermediate of the reduction reaction. Eur J Biochem. 1989 Nov 20;185(3):605–614. doi: 10.1111/j.1432-1033.1989.tb15156.x. [DOI] [PubMed] [Google Scholar]
  24. Trzaskos J. M., Bowen W. D., Shafiee A., Fischer R. T., Gaylor J. L. Cytochrome P-450-dependent oxidation of lanosterol in cholesterol biosynthesis. Microsomal electron transport and C-32 demethylation. J Biol Chem. 1984 Nov 10;259(21):13402–13412. [PubMed] [Google Scholar]
  25. Wells J. A., Cunningham B. C., Graycar T. P., Estell D. A. Recruitment of substrate-specificity properties from one enzyme into a related one by protein engineering. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5167–5171. doi: 10.1073/pnas.84.15.5167. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES