Abstract
The biochemical properties of cytochrome P-450-dependent obtusifoliol 14 alpha-demthylase (P-450OBT.14DM) from maize (Zea mays) seedlings were defined. In particular, the enzyme was shown by differential centrifugation to be localized in the endoplasmic reticulum. P-450OBT.14DM had an apparent Km of 160 +/- 5 microM and an apparent Vmax of 65 +/- 5 pmol/min per mg of protein for its best substrate, obtusifoliol. The substrate specificity of P-450OBT.14DM was thoroughly investigated by comparing the demethylation of obtusifoliol with that of a series of 15 natural or novel synthetic analogues of obtusifoliol. The results obtained clearly indicate that three distinct domains of the sterol substrate are governing obtusifoliol demethylation by P-450OBT.14DM. They revealed that (i) P-450OBT.14DM has probably a specific apolar binding site for the side chain, (ii) the delta 8-double bond is an absolute requirement for substrate demethylation and (iii) the 3-hydroxy group plays a critical role in the enzyme-substrate interaction. Interestingly the binding site, beyond the C-3 position, contains a cleft which cannot accommodate a 4 beta-methyl substituent present in lanosterol or eburicol, the precursors of 14-desmethylsterols respectively in mammals and yeast. This result indicates that P-450OBT.14DM is a novel constitutive cytochrome P-450 with a high degree of substrate and product specificity.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aoyama Y., Yoshida Y., Nishino T., Katsuki H., Maitra U. S., Mohan V. P., Sprinson D. B. Isolation and characterization of an altered cytochrome P-450 from a yeast mutant defective in lanosterol 14 alpha-demethylation. J Biol Chem. 1987 Oct 15;262(29):14260–14264. [PubMed] [Google Scholar]
- Galli-Kienle M., Anastasia M., Cighetti G., Galli G., Fiecchi A. Studies on the 14 alpha-demethylation mechanism in cholesterol biosynthesis. Eur J Biochem. 1980 Sep;110(1):93–105. doi: 10.1111/j.1432-1033.1980.tb04844.x. [DOI] [PubMed] [Google Scholar]
- Gibbons G. F., Goad L. J., Goodwin T. W., Nes W. R. Concerning the role of lanosterol and cycloartenol in steroid biosynthesis. J Biol Chem. 1971 Jun 25;246(12):3967–3976. [PubMed] [Google Scholar]
- Gibbons G. F., Mitropoulos K. A., Pullinger C. R. Lanosterol 14alpha-demethylase. The metabolism of some potential intermediates by cell-free systems from rat liver. Biochem Biophys Res Commun. 1976 Apr 5;69(3):781–789. doi: 10.1016/0006-291x(76)90943-8. [DOI] [PubMed] [Google Scholar]
- Hasson E. P., West C. A. Properties of the System for the Mixed Function Oxidation of Kaurene and Kaurene Derivatives in Microsomes of the Immature Seed of Marah macrocarpus: Electron Transfer Components. Plant Physiol. 1976 Oct;58(4):479–484. doi: 10.1104/pp.58.4.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heintz R., Benveniste P. Plant sterol metabolism. Enzymatic cleavage of the 9beta, 19beta-cyclopropane ring of cyclopropyl sterols in bramble tissue cultures. J Biol Chem. 1974 Jul 10;249(13):4267–4274. [PubMed] [Google Scholar]
- Hewlins M. J., Ehrhardt J. D., Hirth L., Ourisson G. The conversion of [14C]cycloartenol and [14C)lanosterol into phytosterols by cultures of Nicotiana tabacum. Eur J Biochem. 1969 Mar;8(2):184–188. doi: 10.1111/j.1432-1033.1969.tb00513.x. [DOI] [PubMed] [Google Scholar]
- Hitchcock C. A., Brown S. B., Evans E. G., Adams D. J. Cytochrome P-450-dependent 14 alpha-demethylation of lanosterol in Candida albicans. Biochem J. 1989 Jun 1;260(2):549–556. doi: 10.1042/bj2600549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hosoda H., Fukushima D. K., Fishman J. Convenient, high yield conversion of androst-5-ene-3'beta, 17beta-diol to dehydroisoandroster-one. J Org Chem. 1973 Nov 30;38(24):4209–4211. doi: 10.1021/jo00963a028. [DOI] [PubMed] [Google Scholar]
- Lindberg R. L., Negishi M. Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature. 1989 Jun 22;339(6226):632–634. doi: 10.1038/339632a0. [DOI] [PubMed] [Google Scholar]
- OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
- Potts J. R., Weklych R., Conn E. E., Rowell J. The 4-hydroxylation of cinnamic acid by sorghum microsomes and the requirement for cytochrome P-450. J Biol Chem. 1974 Aug 25;249(16):5019–5026. [PubMed] [Google Scholar]
- Rahier A., Génot J. C., Schuber F., Benveniste P., Narula A. S. Inhibition of S-adenosyl-L-methionine sterol-C-24-methyltransferase by analogues of a carbocationic ion high-energy intermediate. Structure activity relationships for C-25 heteroatoms (N, As, S) substituted triterpenoid derivatives. J Biol Chem. 1984 Dec 25;259(24):15215–15223. [PubMed] [Google Scholar]
- Rahier A., Taton M., Benveniste P. Cycloeucalenol-obtusifoliol isomerase. Structural requirements for transformation or binding of substrates and inhibitors. Eur J Biochem. 1989 May 15;181(3):615–626. doi: 10.1111/j.1432-1033.1989.tb14768.x. [DOI] [PubMed] [Google Scholar]
- Rahier A., Taton M. Plant sterol biosynthesis inhibitors: the 14-demethylation steps, their enzymology and inhibition. Biochem Soc Trans. 1990 Feb;18(1):52–56. doi: 10.1042/bst0180052. [DOI] [PubMed] [Google Scholar]
- Rahier A., Taton M. The 14 alpha-demethylation of obtusifoliol by a cytochrome P-450 monooxygenase from higher plants' microsomes. Biochem Biophys Res Commun. 1986 Nov 14;140(3):1064–1072. doi: 10.1016/0006-291x(86)90743-6. [DOI] [PubMed] [Google Scholar]
- Russell D. W. The metabolism of aromatic compounds in higer plants. X. Properties of the cinnamic acid 4-hydroxylase of pea seedlings and some aspects of its metabolic and developmental control. J Biol Chem. 1971 Jun 25;246(12):3870–3878. [PubMed] [Google Scholar]
- Russell P. T., Van Aller R. T., Nes W. R. The mechanism of introduction of alkyl groups at C-24 of sterols. II. The necessity of the delta-24 bond. J Biol Chem. 1967 Dec 25;242(23):5802–5806. [PubMed] [Google Scholar]
- Saunders J. A., Conn E. E., Lin C. H., Shimada M. Localization of Cinnamic Acid 4-Monooxygenase and the Membrane-bound Enzyme System for Dhurrin Biosynthesis in Sorghum Seedlings. Plant Physiol. 1977 Oct;60(4):629–634. doi: 10.1104/pp.60.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schacterle G. R., Pollack R. L. A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal Biochem. 1973 Feb;51(2):654–655. doi: 10.1016/0003-2697(73)90523-x. [DOI] [PubMed] [Google Scholar]
- Shafiee A., Trzaskos J. M., Paik Y. K., Gaylor J. L. Oxidative demethylation of lanosterol in cholesterol biosynthesis: accumulation of sterol intermediates. J Lipid Res. 1986 Jan;27(1):1–10. [PubMed] [Google Scholar]
- Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taton M., Benveniste P., Rahier A. Microsomal delta 8,14-sterol delta 14-reductase in higher plants. Characterization and inhibition by analogues of a presumptive carbocationic intermediate of the reduction reaction. Eur J Biochem. 1989 Nov 20;185(3):605–614. doi: 10.1111/j.1432-1033.1989.tb15156.x. [DOI] [PubMed] [Google Scholar]
- Trzaskos J. M., Bowen W. D., Shafiee A., Fischer R. T., Gaylor J. L. Cytochrome P-450-dependent oxidation of lanosterol in cholesterol biosynthesis. Microsomal electron transport and C-32 demethylation. J Biol Chem. 1984 Nov 10;259(21):13402–13412. [PubMed] [Google Scholar]
- Wells J. A., Cunningham B. C., Graycar T. P., Estell D. A. Recruitment of substrate-specificity properties from one enzyme into a related one by protein engineering. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5167–5171. doi: 10.1073/pnas.84.15.5167. [DOI] [PMC free article] [PubMed] [Google Scholar]