Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Jul 15;277(Pt 2):527–531. doi: 10.1042/bj2770527

Metabolism in vivo of all-trans-[11-3H]retinoic acid after an oral dose in rats. Characterization of retinoyl beta-glucuronide in the blood and other tissues.

A B Barua 1, D B Gunning 1, J A Olson 1
PMCID: PMC1151265  PMID: 1859380

Abstract

Soon after [11-3H]retinoic acid (RA) (1.1 x 10(8) d.p.m.) was administered orally to rats either as a large dose (115 micrograms = 0.38 mumol/rat) or mixed with unlabelled RA as a huge dose (22 mg = 73.33 mumol/rat), retinoyl beta-glucuronide (RAG) was identified and characterized as a significant metabolite in the serum and small intestine. Of the administered dose, 70% remained unchanged as retinoic acid in the stomach up to 1 h. Significant amounts of 5,6-epoxyretinoic acid, 4-hydroxyretinoic acid, esters of retinoic acid and several polar retinoids, including 4-oxoretinoic acid, were also detected in the stomach. No significant difference was observed in the nature of the retinoids found after a large or a huge dose; however, the ratio of RAG/RA was higher after a huge dose than after a large dose. Thus RAG, which is biologically active in vivo and in vitro, is formed quickly in significant amounts in tissues after a dose of RA.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barua A. B., Olson J. A. Chemical synthesis of all-trans retinoyl beta-glucuronide. J Lipid Res. 1985 Oct;26(10):1277–1282. [PubMed] [Google Scholar]
  2. Barua A. B., Olson J. A. Chemical synthesis of all-trans-[11-3H]retinoyl beta-glucuronide and its metabolism in rats in vivo. Biochem J. 1989 Oct 15;263(2):403–409. doi: 10.1042/bj2630403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barua A. B., Olson J. A. Retinoyl beta-glucuronide: an endogenous compound of human blood. Am J Clin Nutr. 1986 Apr;43(4):481–485. doi: 10.1093/ajcn/43.4.481. [DOI] [PubMed] [Google Scholar]
  4. Barua A. B., Olson J. A. Synthesis of 4, 4-difluoro analogs of retinol and retinoic acid. J Lipid Res. 1984 Mar;25(3):304–309. [PubMed] [Google Scholar]
  5. DeLuca H. F., Zile M., Sietsema W. K. The metabolism of retinoic acid to 5,6-epoxyretinoic acid, retinoyl-beta-glucuronide, and other polar metabolites. Ann N Y Acad Sci. 1981 Feb 27;359:25–36. doi: 10.1111/j.1749-6632.1981.tb12734.x. [DOI] [PubMed] [Google Scholar]
  6. Dunagin P. E., Jr, Zachman R. D., Olson J. A. The identification of metabolites of retinal and retinoic acid in rat bile. Biochim Biophys Acta. 1966 Jul 27;124(1):71–85. doi: 10.1016/0304-4165(66)90314-x. [DOI] [PubMed] [Google Scholar]
  7. Gallup J. M., Barua A. B., Furr H. C., Olson J. A. Effects of retinoid beta-glucuronides and N-retinoyl amines on the differentiation of HL-60 cells in vitro. Proc Soc Exp Biol Med. 1987 Dec;186(3):269–274. doi: 10.3181/00379727-186-42612. [DOI] [PubMed] [Google Scholar]
  8. Giguere V., Ong E. S., Segui P., Evans R. M. Identification of a receptor for the morphogen retinoic acid. Nature. 1987 Dec 17;330(6149):624–629. doi: 10.1038/330624a0. [DOI] [PubMed] [Google Scholar]
  9. Janick-Buckner D., Barua A. B., Olson J. A. Induction of HL-60 cell differentiation by water-soluble and nitrogen-containing conjugates of retinoic acid and retinol. FASEB J. 1991 Mar 1;5(3):320–325. doi: 10.1096/fasebj.5.3.2001792. [DOI] [PubMed] [Google Scholar]
  10. Kochhar D. M. Teratogenic activity of retinoic acid. Acta Pathol Microbiol Scand. 1967;70(3):398–404. doi: 10.1111/j.1699-0463.1967.tb01308.x. [DOI] [PubMed] [Google Scholar]
  11. Leo M. A., Iida S., Lieber C. S. Retinoic acid metabolism by a system reconstituted with cytochrome P-450. Arch Biochem Biophys. 1984 Oct;234(1):305–312. doi: 10.1016/0003-9861(84)90353-9. [DOI] [PubMed] [Google Scholar]
  12. Maden M., Summerbell D. Retinoic acid-binding protein in the chick limb bud: identification at developmental stages and binding affinities of various retinoids. J Embryol Exp Morphol. 1986 Sep;97:239–250. [PubMed] [Google Scholar]
  13. McCormick A. M., Napoli J. L. Identification of 5,6-epoxyretinoic acid as an endogenous retinol metabolite. J Biol Chem. 1982 Feb 25;257(4):1730–1735. [PubMed] [Google Scholar]
  14. McCormick A. M., Napoli J. L., Yoshizawa S., DeLuca H. F. 5,6-epoxyretinoic acid is a physiological metabolite of retinoic acid in the rat. Biochem J. 1980 Feb 15;186(2):475–481. doi: 10.1042/bj1860475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Napoli J. L., McCormick A. M. Tissue dependence of retinoic acid metabolism in vivo. Biochim Biophys Acta. 1981 Oct 23;666(1):165–175. doi: 10.1016/0005-2760(81)90102-8. [DOI] [PubMed] [Google Scholar]
  16. Nath K., Olson J. A. Natural occurrence and biological activity of vitamin A derivatives in rat bile. J Nutr. 1967 Dec;93(4):461–469. doi: 10.1093/jn/93.4.461. [DOI] [PubMed] [Google Scholar]
  17. Olson J. A. Some aspects of vitamin A metabolism. Vitam Horm. 1968;26:1–63. doi: 10.1016/s0083-6729(08)60751-7. [DOI] [PubMed] [Google Scholar]
  18. Petkovich M., Brand N. J., Krust A., Chambon P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature. 1987 Dec 3;330(6147):444–450. doi: 10.1038/330444a0. [DOI] [PubMed] [Google Scholar]
  19. Silva D. P., Jr, DeLuca H. F. Metabolism of retinoic acid in vivo in the vitamin A-deficient rat. Biochem J. 1982 Jul 15;206(1):33–41. doi: 10.1042/bj2060033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Swanson B. N., Frolik C. A., Zaharevitz D. W., Roller P. P., Sporn M. B. Dose-dependent kinetics of all-trans-retinoic acid in rats. Plasma levels and excretion into bile, urine, and faeces. Biochem Pharmacol. 1981 Jan 15;30(2):107–113. doi: 10.1016/0006-2952(81)90180-5. [DOI] [PubMed] [Google Scholar]
  21. Vane F. M., Bugge C. J., Rodriguez L. C., Rosenberger M., Doran T. I. Human biliary metabolites of isotretinoin: identification, quantification, synthesis, and biological activity. Xenobiotica. 1990 Feb;20(2):193–207. doi: 10.3109/00498259009047155. [DOI] [PubMed] [Google Scholar]
  22. Vane F. M., Buggé C. J. Identification of 4-oxo-13-cis-retinoic acid as the major metabolite of 13-cis-retinoic acid in human blood. Drug Metab Dispos. 1981 Nov-Dec;9(6):515–520. [PubMed] [Google Scholar]
  23. Zile M. H., Cullum M. E., Simpson R. U., Barua A. B., Swartz D. A. Induction of differentiation of human promyelocytic leukemia cell line HL-60 by retinoyl glucuronide, a biologically active metabolite of vitamin A. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2208–2212. doi: 10.1073/pnas.84.8.2208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zile M. H., Inhorn R. C., DeLuca H. F. Metabolism in vivo of all-trans-retinoic acid. Biosynthesis of 13-cis-retinoic acid and all-trans- and 13-cis-retinoyl glucuronides in the intestinal mucosa of the rat. J Biol Chem. 1982 Apr 10;257(7):3544–3550. [PubMed] [Google Scholar]
  25. Zile M. H., Schnoes H. K., DeLuca H. F. Characterization of retinoyl beta-glucuronide as a minor metabolite of retinoic acid in bile. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3230–3233. doi: 10.1073/pnas.77.6.3230. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES