Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Aug 1;277(Pt 3):611–617. doi: 10.1042/bj2770611

A study of properties and abundance of the components of liver carnitine palmitoyltransferases in mitochondrial inner and outer membranes. Effects of hypothyroidism, fasting and a ketotic diabetic state.

I Ghadiminejad 1, E D Saggerson 1
PMCID: PMC1151285  PMID: 1872797

Abstract

1. Liver mitochondrial outer and inner membranes were isolated from normal, 48 h-fasted, streptozotocin-diabetic and hypothyroid rats. 2. Relative to membrane protein, fasting and diabetes substantially increased the activity of carnitine palmitoyltransferase (CPT) in outer membranes. Inner-membrane CPT specific activity was only slightly altered, being increased in diabetes and decreased in hypothyroidism. Abundance of an inner-membrane Mr-68,000 polypeptide that cross-reacted with an anti-CPT serum was significantly increased in diabetes and hypothyroidism. Relative to inner-membrane CPT activity, this cross-reactivity was increased by 37% in diabetes and by 400% in hypothyroidism, suggesting modification of the intrinsic activity of the CPT in these states. 3. CPT in outer membranes was inhibitable by malonyl-CoA, whereas inner-membrane CPT was insensitive to malonyl-CoA. Fasting and diabetes increased the IC50 (concentration of malonyl-CoA causing 50% inhibition) for outer-membrane CPT, whereas the IC50 was decreased in hypothyroidism. 4. Binding of [14C]malonyl-CoA was observed with both outer and inner membranes and was fitted to two-site models in each case. Fasting, diabetes and hypothyroidism changed the KD for binding at the higher-affinity site in outer membranes in a manner that correlated closely with changes in IC50 for inhibition of outer-membrane CPT by malonyl-CoA. Fasting and diabetes increased the abundance of this outer-membrane high-affinity malonyl-CoA-binding site, whereas hypothyroidism decreased its abundance.

Full text

PDF
611

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bird M. I., Munday L. A., Saggerson E. D., Clark J. B. Carnitine acyltransferase activities in rat brain mitochondria. Bimodal distribution, kinetic constants, regulation by malonyl-CoA and developmental pattern. Biochem J. 1985 Feb 15;226(1):323–330. doi: 10.1042/bj2260323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bird M. I., Saggerson E. D. Binding of malonyl-CoA to isolated mitochondria. Evidence for high- and low-affinity sites in liver and heart and relationship to inhibition of carnitine palmitoyltransferase activity. Biochem J. 1984 Sep 15;222(3):639–647. doi: 10.1042/bj2220639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brady L. J., Silverstein L. J., Hoppel C. L., Brady P. S. Hepatic mitochondrial inner membrane properties and carnitine palmitoyltransferase A and B. Effect of diabetes and starvation. Biochem J. 1985 Dec 1;232(2):445–450. doi: 10.1042/bj2320445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brady P. S., Brady L. J. Action in vivo and in vitro of 2-tetradecylglycidic acid, 2-tetradecylglycidyl-CoA and 2-tetradecylglycidylcarnitine on hepatic carnitine palmitoyltransferase. Biochem J. 1986 Sep 15;238(3):801–809. doi: 10.1042/bj2380801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bremer J. The effect of fasting on the activity of liver carnitine palmitoyltransferase and its inhibition by malonyl-CoA. Biochim Biophys Acta. 1981 Sep 24;665(3):628–631. doi: 10.1016/0005-2760(81)90282-4. [DOI] [PubMed] [Google Scholar]
  6. Cook G. A. Differences in the sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA are due to differences in Ki values. J Biol Chem. 1984 Oct 10;259(19):12030–12033. [PubMed] [Google Scholar]
  7. Cook G. A., Stephens T. W., Harris R. A. Altered sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA in ketotic diabetic rats. Biochem J. 1984 Apr 1;219(1):337–339. doi: 10.1042/bj2190337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Declercq P. E., Falck J. R., Kuwajima M., Tyminski H., Foster D. W., McGarry J. D. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. I. Use of inhibitors. J Biol Chem. 1987 Jul 15;262(20):9812–9821. [PubMed] [Google Scholar]
  9. Edwards M. R., Bird M. I., Saggerson E. D. Effects of DL-2-bromopalmitoyl-CoA and bromoacetyl-CoA in rat liver and heart mitochondria. Inhibition of carnitine palmitoyltransferase and displacement of [14C]malonyl-CoA from mitochondrial binding sites. Biochem J. 1985 Aug 15;230(1):169–179. doi: 10.1042/bj2300169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gamble M. S., Cook G. A. Alteration of the apparent Ki of carnitine palmitoyltransferase for malonyl-CoA by the diabetic state and reversal by insulin. J Biol Chem. 1985 Aug 15;260(17):9516–9519. [PubMed] [Google Scholar]
  12. Ghadiminejad I., Saggerson E. D. Carnitine palmitoyltransferase (CPT2) from liver mitochondrial inner membrane becomes inhibitable by malonyl-CoA if reconstituted with outer membrane malonyl-CoA binding protein. FEBS Lett. 1990 Sep 3;269(2):406–408. doi: 10.1016/0014-5793(90)81204-2. [DOI] [PubMed] [Google Scholar]
  13. Ghadiminejad I., Saggerson E. D. The relationship of rat liver overt carnitine palmitoyltransferase to the mitochondrial malonyl-CoA binding entity and to the latent palmitoyltransferase. Biochem J. 1990 Sep 15;270(3):787–794. doi: 10.1042/bj2700787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grantham B. D., Zammit V. A. Restoration of the properties of carnitine palmitoyltransferase I in liver mitochondria during re-feeding of starved rats. Biochem J. 1986 Oct 15;239(2):485–488. doi: 10.1042/bj2390485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harano Y., Kowal J., Yamazaki R., Lavine L., Miller M. Carnitine palmitoyltransferase activities (1 and 2) and the rate of palmitate oxidation in liver mitochondria from diabetic rats. Arch Biochem Biophys. 1972 Dec;153(2):426–437. doi: 10.1016/0003-9861(72)90360-8. [DOI] [PubMed] [Google Scholar]
  16. Harper R. D., Saggerson E. D. Some aspects of fatty acid oxidation in isolated fat-cell mitochondria from rat. Biochem J. 1975 Dec;152(3):485–494. doi: 10.1042/bj1520485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jenkins W. J., Peters T. J. Mitochondrial enzyme activities in liver biopsies from patients with alcoholic liver disease. Gut. 1978 May;19(5):341–344. doi: 10.1136/gut.19.5.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kerner J., Bieber L. Isolation of a malonyl-CoA-sensitive CPT/beta-oxidation enzyme complex from heart mitochondria. Biochemistry. 1990 May 8;29(18):4326–4334. doi: 10.1021/bi00470a010. [DOI] [PubMed] [Google Scholar]
  19. Kolodziej M. P., Zammit V. A. Re-evaluation of the interaction of malonyl-CoA with the rat liver mitochondrial carnitine palmitoyltransferase system by using purified outer membranes. Biochem J. 1990 Apr 1;267(1):85–90. doi: 10.1042/bj2670085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. McGarry J. D., Leatherman G. F., Foster D. W. Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. J Biol Chem. 1978 Jun 25;253(12):4128–4136. [PubMed] [Google Scholar]
  22. Mendel C. M., Mendel D. B. 'Non-specific' binding. The problem, and a solution. Biochem J. 1985 May 15;228(1):269–272. doi: 10.1042/bj2280269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mills S. E., Foster D. W., McGarry J. D. Effects of pH on the interaction of substrates and malonyl-CoA with mitochondrial carnitine palmitoyltransferase I. Biochem J. 1984 Apr 15;219(2):601–608. doi: 10.1042/bj2190601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mills S. E., Foster D. W., McGarry J. D. Interaction of malonyl-CoA and related compounds with mitochondria from different rat tissues. Relationship between ligand binding and inhibition of carnitine palmitoyltransferase I. Biochem J. 1983 Jul 15;214(1):83–91. doi: 10.1042/bj2140083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  26. Murthy M. S., Pande S. V. Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci U S A. 1987 Jan;84(2):378–382. doi: 10.1073/pnas.84.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Robinson I. N., Zammit V. A. Sensitivity of carnitine acyltransferase I to malonly-CoA inhibition in isolated rat liver mitochondria is quantitatively related to hepatic malonyl-CoA concentration in vivo. Biochem J. 1982 Jul 15;206(1):177–179. doi: 10.1042/bj2060177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saggerson E. D. Carnitine acyltransferase activities in rat liver and heart measured with palmitoyl-CoA and octanoyl-CoA. Latency, effects of K+, bivalent metal ions and malonyl-CoA. Biochem J. 1982 Feb 15;202(2):397–405. doi: 10.1042/bj2020397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Saggerson E. D., Carpenter C. A. Carnitine palmitoyltransferase and carnitine octanoyltransferase activities in liver, kidney cortex, adipocyte, lactating mammary gland, skeletal muscle and heart. FEBS Lett. 1981 Jul 6;129(2):229–232. doi: 10.1016/0014-5793(81)80171-8. [DOI] [PubMed] [Google Scholar]
  30. Saggerson E. D., Carpenter C. A. Carnitine palmitoyltransferase in liver and five extrahepatic tissues in the rat. Inhibition by DL-2-bromopalmitoyl-CoA and effect of hypothyroidism. Biochem J. 1986 May 15;236(1):137–141. doi: 10.1042/bj2360137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Saggerson E. D., Carpenter C. A. Effects of fasting and malonyl CoA on the kinetics of carnitine palmitoyltransferase and carnitine octanoyltransferase in intact rat liver mitochondria. FEBS Lett. 1981 Sep 28;132(2):166–168. doi: 10.1016/0014-5793(81)81152-0. [DOI] [PubMed] [Google Scholar]
  32. Saggerson E. D., Carpenter C. A. Effects of fasting, adrenalectomy and streptozotocin-diabetes on sensitivity of hepatic carnitine acyltransferase to malonyl CoA. FEBS Lett. 1981 Jul 6;129(2):225–228. doi: 10.1016/0014-5793(81)80170-6. [DOI] [PubMed] [Google Scholar]
  33. Saggerson E. D., Carpenter C. A. Malonyl CoA inhibition of carnitine acyltransferase activities: effects of thiol-group reagents. FEBS Lett. 1982 Jan 11;137(1):124–128. doi: 10.1016/0014-5793(82)80329-3. [DOI] [PubMed] [Google Scholar]
  34. Saggerson E. D., Carpenter C. A. Response to starvation of hepatic carnitine palmitoyltransferase activity and its regulation by malonyl-CoA. Sex differences and effects of pregnancy. Biochem J. 1982 Dec 15;208(3):673–678. doi: 10.1042/bj2080673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Saggerson E. D., Carpenter C. A., Tselentis B. S. Effects of thyroidectomy and starvation on the activity and properties of hepatic carnitine palmitoyltransferase. Biochem J. 1982 Dec 15;208(3):667–672. doi: 10.1042/bj2080667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stakkestad J. A., Bremer J. The outer carnitine palmitoyltransferase and regulation of fatty acid metabolism in rat liver in different thyroid states. Biochim Biophys Acta. 1983 Feb 7;750(2):244–252. doi: 10.1016/0005-2760(83)90025-5. [DOI] [PubMed] [Google Scholar]
  37. Stephens T. W., Higgins A. J., Cook G. A., Harris R. A. Two mechanisms produce tissue-specific inhibition of fatty acid oxidation by oxfenicine. Biochem J. 1985 Apr 15;227(2):651–660. doi: 10.1042/bj2270651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weinstein I., Cook G. A., Heimberg M. Regulation by oestrogen of carnitine palmitoyltransferase in hepatic mitochondria. Biochem J. 1986 Jul 15;237(2):593–596. doi: 10.1042/bj2370593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Woeltje K. F., Kuwajima M., Foster D. W., McGarry J. D. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. II. Use of detergents and antibodies. J Biol Chem. 1987 Jul 15;262(20):9822–9827. [PubMed] [Google Scholar]
  40. Zammit V. A. Carnitine acyltransferases in the physiological setting: the liver. Biochem Soc Trans. 1986 Aug;14(4):676–679. doi: 10.1042/bst0140676. [DOI] [PubMed] [Google Scholar]
  41. Zammit V. A., Corstorphine C. G., Gray S. R. Changes in the ability of malonyl-CoA to inhibit carnitine palmitoyltransferase I activity and to bind to rat liver mitochondria during incubation in vitro. Differences in binding at 0 degree C and 37 degrees C with a fixed concentration of malonyl-CoA. Biochem J. 1984 Sep 1;222(2):335–342. doi: 10.1042/bj2220335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zammit V. A., Corstorphine C. G., Kelliher M. G. Evidence for distinct functional molecular sizes of carnitine palmitoyltransferases I and II in rat liver mitochondria. Biochem J. 1988 Mar 1;250(2):415–420. doi: 10.1042/bj2500415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zammit V. A., Corstorphine C. G., Kolodziej M. P. Target size analysis by radiation inactivation of carnitine palmitoyltransferase activity and malonyl-CoA binding in outer membranes from rat liver mitochondria. Biochem J. 1989 Oct 1;263(1):89–95. doi: 10.1042/bj2630089. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES