Abstract
beta 1-Bungarotoxin consists of a phospholipase A2 subunit and a non-phospholipase A2 subunit. Modification of beta 1-bungarotoxin with CNBr resulted in cleavage at Met-6 and Met-8 of its phospholipase A2 subunit. Analysis of the fluorescence data of both the toxin-Ca2+ complex at 300-350 nm and the toxin-Tb3+ complex at 450-650 nm showed the existence of two binding sites for both metal ions on the different domains of the toxin molecule. At pH 7.6 the association constants for the high-affinity and low-affinity sites of the toxin-Ca2+ complex were determined to be 2.79 x 10(3) +/- 0.21 x 10(3) M-1 and 0.47 x 10(3) +/- 0.06 x 10(3) M-1 respectively. For the toxin-Tb3+ complex the association constant for the high-affinity site was 2.95 x 10(3) +/- 0.43 x 10(3) M-1 and that for the low-affinity site was 0.11 x 10(3) +/- 0.03 x 10(3) M-1. Removal of the N-terminal octapeptide of the phospholipase A2 subunit from the toxin molecule caused disintegration of the low-affinity site but did not disrupt the high-affinity site. This might accompany a change in the configuration around His-48 of the phospholipase A2 subunit. Between pH 6 and 8 the binding of metal ions to the high-affinity site increased but that to the low-affinity site did not change with increasing pH. The neurotoxicity and enzymic activity of the toxin were lost on removal of the low-affinity site.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe T., Alemá S., Miledi R. Isolation and characterization of presynaptically acting neurotoxins from the venom of Bungarus snakes. Eur J Biochem. 1977 Oct 17;80(1):1–12. doi: 10.1111/j.1432-1033.1977.tb11849.x. [DOI] [PubMed] [Google Scholar]
- Achari A., Scott D., Barlow P., Vidal J. C., Otwinowski Z., Brunie S., Sigler P. B. Facing up to membranes: structure/function relationships in phospholipases. Cold Spring Harb Symp Quant Biol. 1987;52:441–452. doi: 10.1101/sqb.1987.052.01.051. [DOI] [PubMed] [Google Scholar]
- Chang C. C. Neurotoxins with phospholipase A2 activity in snake venoms. Proc Natl Sci Counc Repub China B. 1985 Apr;9(2):126–142. [PubMed] [Google Scholar]
- Chen Y. H., Tai J. C., Huang W. J., Lai M. Z., Hung M. C., Lai M. D., Yang J. T. Role of aromatic residues in the structure-function relationship of alpha-bungarotoxin. Biochemistry. 1982 May 25;21(11):2592–2600. doi: 10.1021/bi00540a003. [DOI] [PubMed] [Google Scholar]
- Chen Y. H., Yang J. T., Chau K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry. 1974 Jul 30;13(16):3350–3359. doi: 10.1021/bi00713a027. [DOI] [PubMed] [Google Scholar]
- Chen Y. H., Yang J. T., Martinez H. M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry. 1972 Oct 24;11(22):4120–4131. doi: 10.1021/bi00772a015. [DOI] [PubMed] [Google Scholar]
- Chu S. T., Chen Y. H. The intrinsic tryptophan fluorescence of beta 1-bungarotoxin and the Ca2+-binding domains of the toxin as probed with Tb3+ luminescence. Biochem J. 1989 Sep 15;262(3):773–779. doi: 10.1042/bj2620773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dijkstra B. W., Drenth J., Kalk K. H., Vandermaelen P. J. Three-dimensional structure and disulfide bond connections in bovine pancreatic phospholipase A2. J Mol Biol. 1978 Sep 5;124(1):53–60. doi: 10.1016/0022-2836(78)90146-8. [DOI] [PubMed] [Google Scholar]
- Dijkstra B. W., Kalk K. H., Drenth J., de Haas G. H., Egmond M. R., Slotboom A. J. Role of the N-terminus in the interaction of pancreatic phospholipase A2 with aggregated substrates. Properties and crystal structure of transaminated phospholipase A2. Biochemistry. 1984 Jun 5;23(12):2759–2766. doi: 10.1021/bi00307a035. [DOI] [PubMed] [Google Scholar]
- Dijkstra B. W., Kalk K. H., Hol W. G., Drenth J. Structure of bovine pancreatic phospholipase A2 at 1.7A resolution. J Mol Biol. 1981 Mar 25;147(1):97–123. doi: 10.1016/0022-2836(81)90081-4. [DOI] [PubMed] [Google Scholar]
- Dijkstra B. W., Renetseder R., Kalk K. H., Hol W. G., Drenth J. Structure of porcine pancreatic phospholipase A2 at 2.6 A resolution and comparison with bovine phospholipase A2. J Mol Biol. 1983 Jul 25;168(1):163–179. doi: 10.1016/s0022-2836(83)80328-3. [DOI] [PubMed] [Google Scholar]
- Dufton M. J. Proteinase inhibitors and dendrotoxins. Sequence classification, structural prediction and structure/activity. Eur J Biochem. 1985 Dec 16;153(3):647–654. doi: 10.1111/j.1432-1033.1985.tb09349.x. [DOI] [PubMed] [Google Scholar]
- Epstein M., Levitzki A., Reuben J. Binding of lanthanides and of divalent metal ions to porcine trypsin. Biochemistry. 1974 Apr 9;13(8):1777–1782. doi: 10.1021/bi00705a034. [DOI] [PubMed] [Google Scholar]
- Fisher J., Primrose W. U., Roberts G. C., Dekker N., Boelens R., Kaptein R., Slotboom A. J. 1H NMR studies of bovine and porcine phospholipase A2: assignment of aromatic resonances and evidence for a conformational equilibrium in solution. Biochemistry. 1989 Jul 11;28(14):5939–5946. doi: 10.1021/bi00440a034. [DOI] [PubMed] [Google Scholar]
- GROSS E., WITKOP B. Nonenzymatic cleavage of peptide bonds: the methionine residues in bovine pancreatic ribonuclease. J Biol Chem. 1962 Jun;237:1856–1860. [PubMed] [Google Scholar]
- Harvey A. L., Karlsson E. Protease inhibitor homologues from mamba venoms: facilitation of acetylcholine release and interactions with prejunctional blocking toxins. Br J Pharmacol. 1982 Sep;77(1):153–161. doi: 10.1111/j.1476-5381.1982.tb09281.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keith C., Feldman D. S., Deganello S., Glick J., Ward K. B., Jones E. O., Sigler P. B. The 2.5 A crystal structure of a dimeric phospholipase A2 from the venom of Crotalus atrox. J Biol Chem. 1981 Aug 25;256(16):8602–8607. [PubMed] [Google Scholar]
- Kelly R. B., Oberg S. G., Strong P. N., Wagner G. M. beta-Bungarotoxin, a phospholipase that stimulates transmitter release. Cold Spring Harb Symp Quant Biol. 1976;40:117–125. doi: 10.1101/sqb.1976.040.01.013. [DOI] [PubMed] [Google Scholar]
- Kini R. M., Evans H. J. Structure-function relationships of phospholipases. The anticoagulant region of phospholipases A2. J Biol Chem. 1987 Oct 25;262(30):14402–14407. [PubMed] [Google Scholar]
- Kondo K., Narita K., Lee C. Y. Chemical properties and amino acid composition of beta1-bungarotoxin from the venom of Bungarus multicinctus (Formosan banded krait). J Biochem. 1978 Jan;83(1):91–99. doi: 10.1093/oxfordjournals.jbchem.a131917. [DOI] [PubMed] [Google Scholar]
- Lin W. Z., Chu S. T., Chen Y. H. Optical activity and conformation of beta-bungarotoxin in solution. Proc Natl Sci Counc Repub China B. 1984 Apr;8(2):113–118. [PubMed] [Google Scholar]
- Renetseder R., Brunie S., Dijkstra B. W., Drenth J., Sigler P. B. A comparison of the crystal structures of phospholipase A2 from bovine pancreas and Crotalus atrox venom. J Biol Chem. 1985 Sep 25;260(21):11627–11634. [PubMed] [Google Scholar]
- Wang C. L., Leavis P. C., Horrocks W. D., Jr, Gergely J. Binding of lanthanide ions to troponin C. Biochemistry. 1981 Apr 28;20(9):2439–2444. doi: 10.1021/bi00512a012. [DOI] [PubMed] [Google Scholar]
- van Scharrenburg G. J., Puijk W. C., Egmond M. R., van der Schaft P. H., de Haas G. H., Slotboom A. J. Effects of substitution of the absolutely invariant glutamine-4 and phenylalanine-5 in bovine pancreatic phospholipase A2 on enzymatic activity and substrate binding properties. Biochemistry. 1982 Mar 16;21(6):1345–1352. doi: 10.1021/bi00535a037. [DOI] [PubMed] [Google Scholar]
