Abstract
Phospholipases A2 from pig pancreas and the venoms from bee, Naja naja and Crotalus atrox have been studied by using a new continuous fluorescence displacement assay that utilizes normal phospholipid substrates [Wilton (1990) Biochem. J. 266, 435-439]. With limiting amounts of substrate, the assay demonstrated stoichiometric conversion into products with both pancreatic and venom enzymes, and thus would allow phospholipid determination at concentrations down to about 0.1 microM. The substrate specificity of the enzyme was determined for the four enzymes in terms of both phospholipid head group and fatty acid selectivity. None of the enzymes demonstrated a preference for arachidonic acid-containing phospholipid under the conditions of this assay. No lag was observed with any enzyme with either phosphatidylcholine or phosphatidylglycerol as substrate. With dipalmitoyl-phosphatidylcholine as substrate, the assay clearly highlighted the different membrane-penetrating properties of the pancreatic and Naja naja enzymes and demonstrated maximal activity for the pancreatic enzyme in the region of the phase-transition temperature of this substrate, at about 35 degrees C.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Axelrod J., Burch R. M., Jelsema C. L. Receptor-mediated activation of phospholipase A2 via GTP-binding proteins: arachidonic acid and its metabolites as second messengers. Trends Neurosci. 1988 Mar;11(3):117–123. doi: 10.1016/0166-2236(88)90157-9. [DOI] [PubMed] [Google Scholar]
- Batzri S., Korn E. D. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta. 1973 Apr 16;298(4):1015–1019. doi: 10.1016/0005-2736(73)90408-2. [DOI] [PubMed] [Google Scholar]
- Clark J. D., Milona N., Knopf J. L. Purification of a 110-kilodalton cytosolic phospholipase A2 from the human monocytic cell line U937. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7708–7712. doi: 10.1073/pnas.87.19.7708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diez E., Mong S. Purification of a phospholipase A2 from human monocytic leukemic U937 cells. Calcium-dependent activation and membrane association. J Biol Chem. 1990 Aug 25;265(24):14654–14661. [PubMed] [Google Scholar]
- Gronich J. H., Bonventre J. V., Nemenoff R. A. Purification of a high-molecular-mass form of phospholipase A2 from rat kidney activated at physiological calcium concentrations. Biochem J. 1990 Oct 1;271(1):37–43. doi: 10.1042/bj2710037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jain M. K., Berg O. G. The kinetics of interfacial catalysis by phospholipase A2 and regulation of interfacial activation: hopping versus scooting. Biochim Biophys Acta. 1989 Apr 3;1002(2):127–156. doi: 10.1016/0005-2760(89)90281-6. [DOI] [PubMed] [Google Scholar]
- Kramer R. M., Hession C., Johansen B., Hayes G., McGray P., Chow E. P., Tizard R., Pepinsky R. B. Structure and properties of a human non-pancreatic phospholipase A2. J Biol Chem. 1989 Apr 5;264(10):5768–5775. [PubMed] [Google Scholar]
- Lange Y., Swaisgood M. H., Ramos B. V., Steck T. L. Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J Biol Chem. 1989 Mar 5;264(7):3786–3793. [PubMed] [Google Scholar]
- Leslie C. C., Channon J. Y. Anionic phospholipids stimulate an arachidonoyl-hydrolyzing phospholipase A2 from macrophages and reduce the calcium requirement for activity. Biochim Biophys Acta. 1990 Aug 6;1045(3):261–270. doi: 10.1016/0005-2760(90)90129-l. [DOI] [PubMed] [Google Scholar]
- Leslie C. C., Voelker D. R., Channon J. Y., Wall M. M., Zelarney P. T. Properties and purification of an arachidonoyl-hydrolyzing phospholipase A2 from a macrophage cell line, RAW 264.7. Biochim Biophys Acta. 1988 Dec 16;963(3):476–492. doi: 10.1016/0005-2760(88)90316-5. [DOI] [PubMed] [Google Scholar]
- Plückthun A., Dennis E. A. Activation, aggregation, and product inhibition of cobra venom phospholipase A2 and comparison with other phospholipases. J Biol Chem. 1985 Sep 15;260(20):11099–11106. [PubMed] [Google Scholar]
- Romero G., Thompson K., Biltonen R. L. The activation of porcine pancreatic phospholipase A2 by dipalmitoylphosphatidylcholine large unilamellar vesicles. Analysis of the state of aggregation of the activated enzyme. J Biol Chem. 1987 Oct 5;262(28):13476–13482. [PubMed] [Google Scholar]
- Samborski R. W., Ridgway N. D., Vance D. E. Evidence that only newly made phosphatidylethanolamine is methylated to phosphatidylcholine and that phosphatidylethanolamine is not significantly deacylated-reacylated in rat hepatocytes. J Biol Chem. 1990 Oct 25;265(30):18322–18329. [PubMed] [Google Scholar]
- Schalkwijk C. G., Märki F., Van den Bosch H. Studies on the acyl-chain selectivity of cellular phospholipases A2. Biochim Biophys Acta. 1990 May 1;1044(1):139–146. doi: 10.1016/0005-2760(90)90229-q. [DOI] [PubMed] [Google Scholar]
- Scott D. L., White S. P., Otwinowski Z., Yuan W., Gelb M. H., Sigler P. B. Interfacial catalysis: the mechanism of phospholipase A2. Science. 1990 Dec 14;250(4987):1541–1546. doi: 10.1126/science.2274785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seilhamer J. J., Pruzanski W., Vadas P., Plant S., Miller J. A., Kloss J., Johnson L. K. Cloning and recombinant expression of phospholipase A2 present in rheumatoid arthritic synovial fluid. J Biol Chem. 1989 Apr 5;264(10):5335–5338. [PubMed] [Google Scholar]
- Suwa Y., Kudo I., Imaizumi A., Okada M., Kamimura T., Suzuki Y., Chang H. W., Hara S., Inoue K. Proteinaceous inhibitors of phospholipase A2 purified from inflammatory sites in rats. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2395–2399. doi: 10.1073/pnas.87.7.2395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szoka F., Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng. 1980;9:467–508. doi: 10.1146/annurev.bb.09.060180.002343. [DOI] [PubMed] [Google Scholar]
- Tomasselli A. G., Hui J., Fisher J., Zürcher-Neely H., Reardon I. M., Oriaku E., Kézdy F. J., Heinrikson R. L. Dimerization and activation of porcine pancreatic phospholipase A2 via substrate level acylation of lysine 56. J Biol Chem. 1989 Jun 15;264(17):10041–10047. [PubMed] [Google Scholar]
- Van der Wiele F. C., Atsma W., Roelofsen B., van Linde M., Van Binsbergen J., Radvanyi F., Raykova D., Slotboom A. J., De Haas G. H. Site-specific epsilon-NH2 monoacylation of pancreatic phospholipase A2. 2. Transformation of soluble phospholipase A2 into a highly penetrating "membrane-bound" form. Biochemistry. 1988 Mar 8;27(5):1688–1694. doi: 10.1021/bi00405a046. [DOI] [PubMed] [Google Scholar]
- Volwerk J. J., Jost P. C., de Haas G. H., Griffith O. H. Activation of porcine pancreatic phospholipase A2 by the presence of negative charges at the lipid-water interface. Biochemistry. 1986 Apr 8;25(7):1726–1733. doi: 10.1021/bi00355a042. [DOI] [PubMed] [Google Scholar]
- Wijkander J., Sundler R. A phospholipase A2 hydrolyzing arachidonoyl-phospholipids in mouse peritoneal macrophages. FEBS Lett. 1989 Feb 13;244(1):51–56. doi: 10.1016/0014-5793(89)81160-3. [DOI] [PubMed] [Google Scholar]
- Wilton D. C. A continuous fluorescence displacement assay for the measurement of phospholipase A2 and other lipases that release long-chain fatty acids. Biochem J. 1990 Mar 1;266(2):435–439. doi: 10.1042/bj2660435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilton D. C. A continuous fluorescence-displacement assay for triacylglycerol lipase and phospholipase C that also allows the measurement of acylglycerols. Biochem J. 1991 May 15;276(Pt 1):129–133. doi: 10.1042/bj2760129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilton D. C. The fatty acid analogue 11-(dansylamino)undecanoic acid is a fluorescent probe for the bilirubin-binding sites of albumin and not for the high-affinity fatty acid-binding sites. Biochem J. 1990 Aug 15;270(1):163–166. doi: 10.1042/bj2700163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Worrall A. F., Evans C., Wilton D. C. Synthesis of a gene for rat liver fatty-acid-binding protein and its expression in Escherichia coli. Biochem J. 1991 Sep 1;278(Pt 2):365–368. doi: 10.1042/bj2780365. [DOI] [PMC free article] [PubMed] [Google Scholar]