Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Sep 15;278(Pt 3):857–862. doi: 10.1042/bj2780857

Distribution of manganese in rat pancreas and identification of its primary binding protein as pro-carboxypeptidase B.

H Kodama 1, N Shimojo 1, K T Suzuki 1
PMCID: PMC1151425  PMID: 1898371

Abstract

Distribution of manganese (Mn) and its binding to specific proteins were examined in rat pancreas. A MnCl2 solution was injected subcutaneously into Wistar rats daily at a single dose of 15 mg of Mn/kg body weight for 10 days and the animals were killed 1 day after the last injection. The concentration of Mn in the pancreas increased considerably from 1.4 +/- 0.2 (control) to 13.3 +/- 3.7 micrograms/g wet tissue by the repeated injection of Mn. The distribution of Mn in the soluble fraction of the pancreas (170,000 g supernatant) was determined on a gel-filtration column (Asahipak GST-520) using an h.p.l.c.-inductively coupled argon plasma atomic-emission spectrometry (i.c.p.) technique. The metal was eluted as a single peak in the high-molecular-mass protein fraction, where Mn had been observed as a small peak in the control profile, suggesting that the administered Mn was bound to the same Mn-binding component as that in the control. On the basis of enzymic and chemical characterization of the protein, it was identified as a zymogen of carboxypeptidase B (pro-carboxypeptidase B, pro-CPB). The elution profiles of the protein by h.p.l.c.-i.c.p. indicated that Mn and zinc (Zn) were bound to the zymogen with a molar ratio of 1:4 in normal rat pancreas. Mn bound to the zymogen was easily replaced by Zn in vitro, suggesting that Mn was bound to the Zn-binding site and that the binding affinity to Zn was higher than that to Mn. The present results indicate that pro-CPB is the primary Mn-binding protein in the pancreas of control and also Mn-administered rats.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdelmoumene S., Gardner J. D. Effect of extracellular manganese on amylase release from dispersed pancreatic acini. Am J Physiol. 1981 Nov;241(5):G359–G364. doi: 10.1152/ajpgi.1981.241.5.G359. [DOI] [PubMed] [Google Scholar]
  2. Avilés F. X., Vendrell J., Burgos F. J., Soriano F., Méndez E. Sequential homologies between procarboxypeptidases A and B from porcine pancreas. Biochem Biophys Res Commun. 1985 Jul 16;130(1):97–103. doi: 10.1016/0006-291x(85)90387-0. [DOI] [PubMed] [Google Scholar]
  3. BURNETT W. T., Jr, BIGELOW R. R., KIMBALL A. W., SHEPPARD C. W. Radio-manganese studies on the mouse, rat and pancreatic fistula dog. Am J Physiol. 1952 Mar;168(3):620–625. doi: 10.1152/ajplegacy.1952.168.3.620. [DOI] [PubMed] [Google Scholar]
  4. Baly D. L., Curry D. L., Keen C. L., Hurley L. S. Effect of manganese deficiency on insulin secretion and carbohydrate homeostasis in rats. J Nutr. 1984 Aug;114(8):1438–1446. doi: 10.1093/jn/114.8.1438. [DOI] [PubMed] [Google Scholar]
  5. Baly D. L., Lönnerdal B., Keen C. L. Effects of high doses of manganese on carbohydrate homeostasis. Toxicol Lett. 1985 Apr;25(1):95–102. doi: 10.1016/0378-4274(85)90106-7. [DOI] [PubMed] [Google Scholar]
  6. Brannon P. M., Collins V. P., Korc M. Alterations of pancreatic digestive enzyme content in the manganese-deficient rat. J Nutr. 1987 Feb;117(2):305–311. doi: 10.1093/jn/117.2.305. [DOI] [PubMed] [Google Scholar]
  7. Clauser E., Gardell S. J., Craik C. S., MacDonald R. J., Rutter W. J. Structural characterization of the rat carboxypeptidase A1 and B genes. Comparative analysis of the rat carboxypeptidase gene family. J Biol Chem. 1988 Nov 25;263(33):17837–17845. [PubMed] [Google Scholar]
  8. Hurley L. S., Keen C. L., Baly D. L. Manganese deficiency and toxicity: effects on carbohydrate metabolism in the rat. Neurotoxicology. 1984 Spring;5(1):97–104. [PubMed] [Google Scholar]
  9. Ishihara N., Yoshida A., Koizumi M. Metal concentrations in human pancreatic juice. Arch Environ Health. 1987 Nov-Dec;42(6):356–360. doi: 10.1080/00039896.1987.9934359. [DOI] [PubMed] [Google Scholar]
  10. Korc M. Manganese action on pancreatic protein synthesis in normal and diabetic rats. Am J Physiol. 1983 Nov;245(5 Pt 1):G628–G634. doi: 10.1152/ajpgi.1983.245.5.G628. [DOI] [PubMed] [Google Scholar]
  11. Korc M. Manganese action on protein synthesis in diabetic rat pancreas: evidence for a possible physiological role. J Nutr. 1984 Nov;114(11):2119–2126. doi: 10.1093/jn/114.11.2119. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lydén A., Larsson B. S., Lindquist N. G. Autoradiography of manganese: accumulation and retention in the pancreas. Acta Pharmacol Toxicol (Copenh) 1983 Mar;52(3):205–210. doi: 10.1111/j.1600-0773.1983.tb01087.x. [DOI] [PubMed] [Google Scholar]
  15. MAYNARD L. S., COTZIAS G. C. The partition of manganese among organs and intracellular organelles of the rat. J Biol Chem. 1955 May;214(1):489–495. [PubMed] [Google Scholar]
  16. Pascual R., Burgos F. J., Salva M., Soriano F., Mendez E., Aviles F. X. Purification and properties of five different forms of human procarboxypeptidases. Eur J Biochem. 1989 Feb 15;179(3):609–616. doi: 10.1111/j.1432-1033.1989.tb14590.x. [DOI] [PubMed] [Google Scholar]
  17. Piras R., Vallee B. L. Procarboxypeptidase A-carboxypeptidase A interrelationships. Metal and substrate binding. Biochemistry. 1967 Jan;6(1):348–357. doi: 10.1021/bi00853a052. [DOI] [PubMed] [Google Scholar]
  18. Reeck G. R., Neurath H. Isolation and characterization of pancreatic procarboxypeptidase B and carboxypeptidase B of the African lungfish. Biochemistry. 1972 Oct 10;11(21):3947–3955. doi: 10.1021/bi00771a018. [DOI] [PubMed] [Google Scholar]
  19. Sakurai H., Nishida M., Yoshimura T., Takada J., Koyama M. Partition of divalent and total manganese in organs and subcellular organelles of MnCl2-treated rats studied by ESR and neutron activation analysis. Biochim Biophys Acta. 1985 Aug 16;841(2):208–214. [PubMed] [Google Scholar]
  20. Scheuhammer A. M., Cherian M. G. The influence of manganese on the distribution of essential trace elements. II. The tissue distribution of manganese, magnesium, zinc, iron, and copper in rats after chronic manganese exposure. J Toxicol Environ Health. 1983 Aug-Sep;12(2-3):361–370. doi: 10.1080/15287398309530433. [DOI] [PubMed] [Google Scholar]
  21. Scheuhammer A. M. Chronic manganese exposure in rats: histological changes in the pancreas. J Toxicol Environ Health. 1983 Aug-Sep;12(2-3):353–360. doi: 10.1080/15287398309530432. [DOI] [PubMed] [Google Scholar]
  22. Sunaga H., Kobayashi E., Shimojo N., Suzuki K. T. Detection of sulfur-containing compounds in control and cadmium-exposed rat organs by high-performance liquid chromatography--vacuum-ultraviolet inductively coupled plasma-atomic emission spectrometry (HPLC-ICP). Anal Biochem. 1987 Jan;160(1):160–168. doi: 10.1016/0003-2697(87)90626-9. [DOI] [PubMed] [Google Scholar]
  23. Suzuki K. T., Karasawa A., Sunaga H., Kodama H., Yamanaka K. Uptake of copper from the bloodstream and its relation to induction of metallothionein synthesis in the rat. Comp Biochem Physiol C. 1989;94(1):93–97. doi: 10.1016/0742-8413(89)90149-7. [DOI] [PubMed] [Google Scholar]
  24. Suzuki K. T., Karasawa A., Yamanaka K. Binding of copper to albumin and participation of cysteine in vivo and in vitro. Arch Biochem Biophys. 1989 Sep;273(2):572–577. doi: 10.1016/0003-9861(89)90517-1. [DOI] [PubMed] [Google Scholar]
  25. Suzuki K. T., Sunaga H., Kobayashi E., Hatakeyama S. Environmental and injected cadmium are sequestered by two major isoforms of basal copper, zinc-metallothionein in gibel (Carassius auratus langsdorfi) liver. Comp Biochem Physiol C. 1987;87(1):87–93. doi: 10.1016/0742-8413(87)90187-3. [DOI] [PubMed] [Google Scholar]
  26. Suzuki K. T., Sunaga H., Kobayashi E., Shimojo N. Mercaptalbumin as a selective cadmium-binding protein in rat serum. Toxicol Appl Pharmacol. 1986 Dec;86(3):466–473. doi: 10.1016/0041-008x(86)90374-1. [DOI] [PubMed] [Google Scholar]
  27. Werner L., Korc M., Brannon P. M. Effects of manganese deficiency and dietary composition on rat pancreatic enzyme content. J Nutr. 1987 Dec;117(12):2079–2085. doi: 10.1093/jn/117.12.2079. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES