Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Aug 15;278(Pt 1):81–89. doi: 10.1042/bj2780081

Guanine-nucleotide- and adenine-nucleotide-dependent regulation of phospholipase D in electropermeabilized HL-60 granulocytes.

M S Xie 1, G R Dubyak 1
PMCID: PMC1151452  PMID: 1883343

Abstract

We have characterized the regulation of phospholipase D (PLD) in electropermeabilized HL-60 granulocytes in which endogenous phospholipids were pre-labelled with [3H]oleic acid. Treatment of these permeabilized cells with the non-hydrolysable GTP analogues guanosine 5'-[gamma-thio]triphosphate (GTP[S]) and guanosine 5'-[beta gamma-imido]triphosphate induced a sustained (near-linear for up to 60 min) accumulation of phosphatidic acid (PA). In the presence of ethanol a sustained production of phosphatidylethanol (PEt) was also observed. With increasing concentrations of ethanol, PEt formation increased, whereas PA formation declined; this indicated involvement of a PLD-type effector enzyme. The ability of GTP[S] to stimulate this PLD activity was Mg(2+)-dependent and was inhibited by GDP and its non-hydrolysable beta-thio analogue. Ca2+, at concentrations less than or equal to nM, had no effect on the GTP[S]-dependent PLD activity. However, higher concentrations of Ca2+ produced a significant potentiation of this activity. Inclusion of MgATP (greater than or equal to 0.1 mM), but not other nucleoside triphosphates, also induced a large potentiation of GTP[S]-dependent PLD activation. In the absence of guanine nucleotides, MgATP elicited no significant activation of PLD. Significantly, this effect of ATP was not mimicked by adenosine 5'-[beta gamma-methylene]triphosphate, a non-hydrolysable ATP analogue. Rather, this analogue inhibited both basal and ATP-potentiated GTP[S]-dependent PLD activity. This suggests that the ability of ATP to potentiate GTP[S]-dependent PLD activity involves phosphotransferase action rather than simple allosteric effects induced by adenine nucleotide binding. The absolute magnitude of the GTP[S]-dependent PLD activity which could be potentiated by MgATP was decreased by 90% when the permeabilized cells were preincubated for various times before addition of these stimulatory agents. This time-dependent loss of MgATP-induced potentiation was prevented when the permeabilized cells were preincubated in the presence of GTP[S]. These results demonstrate that electropermeabilized HL-60 granulocytes can be used to discriminate synergistic roles for a GTP-binding protein(s) and an ATP-dependent process (kinase?) in the regulation of phospholipase D activity.

Full text

PDF
81

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agwu D. E., McPhail L. C., Chabot M. C., Daniel L. W., Wykle R. L., McCall C. E. Choline-linked phosphoglycerides. A source of phosphatidic acid and diglycerides in stimulated neutrophils. J Biol Chem. 1989 Jan 25;264(3):1405–1413. [PubMed] [Google Scholar]
  2. Anthes J. C., Billah M. M., Cali A., Egan R. W., Siegel M. I. Chemotactic peptide, calcium and guanine nucleotide regulation of phospholipase C activity in membranes from DMSO-differentiated HL60 cells. Biochem Biophys Res Commun. 1987 Jun 15;145(2):825–833. doi: 10.1016/0006-291x(87)91039-4. [DOI] [PubMed] [Google Scholar]
  3. Anthes J. C., Eckel S., Siegel M. I., Egan R. W., Billah M. M. Phospholipase D in homogenates from HL-60 granulocytes: implications of calcium and G protein control. Biochem Biophys Res Commun. 1989 Aug 30;163(1):657–664. doi: 10.1016/0006-291x(89)92187-6. [DOI] [PubMed] [Google Scholar]
  4. Balsinde J., Diez E., Fernandez B., Mollinedo F. Biochemical characterization of phospholipase D activity from human neutrophils. Eur J Biochem. 1989 Dec 22;186(3):717–724. doi: 10.1111/j.1432-1033.1989.tb15265.x. [DOI] [PubMed] [Google Scholar]
  5. Billah M. M., Anthes J. C. The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem J. 1990 Jul 15;269(2):281–291. doi: 10.1042/bj2690281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Billah M. M., Eckel S., Mullmann T. J., Egan R. W., Siegel M. I. Phosphatidylcholine hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide-stimulated human neutrophils. Involvement of phosphatidate phosphohydrolase in signal transduction. J Biol Chem. 1989 Oct 15;264(29):17069–17077. [PubMed] [Google Scholar]
  7. Billah M. M., Pai J. K., Mullmann T. J., Egan R. W., Siegel M. I. Regulation of phospholipase D in HL-60 granulocytes. Activation by phorbol esters, diglyceride, and calcium ionophore via protein kinase- independent mechanisms. J Biol Chem. 1989 May 25;264(15):9069–9076. [PubMed] [Google Scholar]
  8. Bocckino S. B., Blackmore P. F., Wilson P. B., Exton J. H. Phosphatidate accumulation in hormone-treated hepatocytes via a phospholipase D mechanism. J Biol Chem. 1987 Nov 5;262(31):15309–15315. [PubMed] [Google Scholar]
  9. Bocckino S. B., Wilson P. B., Exton J. H. Ca2+-mobilizing hormones elicit phosphatidylethanol accumulation via phospholipase D activation. FEBS Lett. 1987 Dec 10;225(1-2):201–204. doi: 10.1016/0014-5793(87)81157-2. [DOI] [PubMed] [Google Scholar]
  10. Bonser R. W., Thompson N. T., Randall R. W., Garland L. G. Phospholipase D activation is functionally linked to superoxide generation in the human neutrophil. Biochem J. 1989 Dec 1;264(2):617–620. doi: 10.1042/bj2640617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cabot M. C., Welsh C. J., Zhang Z. C., Cao H. T. Evidence for a protein kinase C-directed mechanism in the phorbol diester-induced phospholipase D pathway of diacylglycerol generation from phosphatidylcholine. FEBS Lett. 1989 Mar 13;245(1-2):85–90. doi: 10.1016/0014-5793(89)80197-8. [DOI] [PubMed] [Google Scholar]
  12. Chalifa V., Möhn H., Liscovitch M. A neutral phospholipase D activity from rat brain synaptic plasma membranes. Identification and partial characterization. J Biol Chem. 1990 Oct 15;265(29):17512–17519. [PubMed] [Google Scholar]
  13. Chaplinski T. J., Niedel J. E. Cyclic nucleotide-induced maturation of human promyelocytic leukemia cells. J Clin Invest. 1982 Nov;70(5):953–964. doi: 10.1172/JCI110707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cockcroft S., Allan D. The fatty acid composition of phosphatidylinositol, phosphatidate and 1,2-diacylglycerol in stimulated human neutrophils. Biochem J. 1984 Sep 1;222(2):557–559. doi: 10.1042/bj2220557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cockcroft S. Ca2+-dependent conversion of phosphatidylinositol to phosphatidate in neutrophils stimulated with fMet-Leu-Phe or ionophore A23187. Biochim Biophys Acta. 1984 Aug 15;795(1):37–46. doi: 10.1016/0005-2760(84)90102-4. [DOI] [PubMed] [Google Scholar]
  16. Cockcroft S., Stutchfield J. ATP stimulates secretion in human neutrophils and HL60 cells via a pertussis toxin-sensitive guanine nucleotide-binding protein coupled to phospholipase C. FEBS Lett. 1989 Mar 13;245(1-2):25–29. doi: 10.1016/0014-5793(89)80184-x. [DOI] [PubMed] [Google Scholar]
  17. Cockcroft S., Stutchfield J. The receptors for ATP and fMetLeuPhe are independently coupled to phospholipases C and A2 via G-protein(s). Relationship between phospholipase C and A2 activation and exocytosis in HL60 cells and human neutrophils. Biochem J. 1989 Nov 1;263(3):715–723. doi: 10.1042/bj2630715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Collins S. J. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood. 1987 Nov;70(5):1233–1244. [PubMed] [Google Scholar]
  19. Cowen D. S., Baker B., Dubyak G. R. Pertussis toxin produces differential inhibitory effects on basal, P2-purinergic, and chemotactic peptide-stimulated inositol phospholipid breakdown in HL-60 cells and HL-60 cell membranes. J Biol Chem. 1990 Sep 25;265(27):16181–16189. [PubMed] [Google Scholar]
  20. Cowen D. S., Lazarus H. M., Shurin S. B., Stoll S. E., Dubyak G. R. Extracellular adenosine triphosphate activates calcium mobilization in human phagocytic leukocytes and neutrophil/monocyte progenitor cells. J Clin Invest. 1989 May;83(5):1651–1660. doi: 10.1172/JCI114064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Cowen D. S., Sanders M., Dubyak G. P2-purinergic receptors activate a guanine nucleotide-dependent phospholipase C in membranes from HL-60 cells. Biochim Biophys Acta. 1990 Jul 12;1053(2-3):195–203. doi: 10.1016/0167-4889(90)90014-5. [DOI] [PubMed] [Google Scholar]
  22. Domino S. E., Bocckino S. B., Garbers D. L. Activation of phospholipase D by the fucose-sulfate glycoconjugate that induces an acrosome reaction in spermatozoa. J Biol Chem. 1989 Jun 5;264(16):9412–9419. [PubMed] [Google Scholar]
  23. Eckstein F. Nucleoside phosphorothioates. Annu Rev Biochem. 1985;54:367–402. doi: 10.1146/annurev.bi.54.070185.002055. [DOI] [PubMed] [Google Scholar]
  24. Exton J. H. Signaling through phosphatidylcholine breakdown. J Biol Chem. 1990 Jan 5;265(1):1–4. [PubMed] [Google Scholar]
  25. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  26. Grinstein S., Hill M., Furuya W. Activation of electropermeabilized neutrophils by adenosine 5'-[gamma-thio]triphosphate (ATP[S]). Role of phosphatases in stimulus-response coupling. Biochem J. 1989 Aug 1;261(3):755–759. doi: 10.1042/bj2610755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Harden T. K., Hawkins P. T., Stephens L., Boyer J. L., Downes C. P. Phosphoinositide hydrolysis by guanosine 5'-[gamma-thio]triphosphate-activated phospholipase C of turkey erythrocyte membranes. Biochem J. 1988 Jun 1;252(2):583–593. doi: 10.1042/bj2520583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Heller M. Phospholipase D. Adv Lipid Res. 1978;16:267–326. doi: 10.1016/b978-0-12-024916-9.50011-1. [DOI] [PubMed] [Google Scholar]
  29. Irving H. R., Exton J. H. Phosphatidylcholine breakdown in rat liver plasma membranes. Roles of guanine nucleotides and P2-purinergic agonists. J Biol Chem. 1987 Mar 15;262(8):3440–3443. [PubMed] [Google Scholar]
  30. Kiss Z., Anderson W. B. ATP stimulates the hydrolysis of phosphatidylethanolamine in NIH 3T3 cells. Potentiating effects of guanosine triphosphates and sphingosine. J Biol Chem. 1990 May 5;265(13):7345–7350. [PubMed] [Google Scholar]
  31. Kiss Z., Anderson W. B. Phorbol ester stimulates the hydrolysis of phosphatidylethanolamine in leukemic HL-60, NIH 3T3, and baby hamster kidney cells. J Biol Chem. 1989 Jan 25;264(3):1483–1487. [PubMed] [Google Scholar]
  32. Knight D. E., Scrutton M. C. Gaining access to the cytosol: the technique and some applications of electropermeabilization. Biochem J. 1986 Mar 15;234(3):497–506. doi: 10.1042/bj2340497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kobayashi M., Kanfer J. N. Phosphatidylethanol formation via transphosphatidylation by rat brain synaptosomal phospholipase D. J Neurochem. 1987 May;48(5):1597–1603. doi: 10.1111/j.1471-4159.1987.tb05707.x. [DOI] [PubMed] [Google Scholar]
  34. Lavie Y., Liscovitch M. Activation of phospholipase D by sphingoid bases in NG108-15 neural-derived cells. J Biol Chem. 1990 Mar 5;265(7):3868–3872. [PubMed] [Google Scholar]
  35. Lindmar R., Löffelholz K., Sandmann J. On the mechanism of muscarinic hydrolysis of choline phospholipids in the heart. Biochem Pharmacol. 1988 Dec 15;37(24):4689–4695. doi: 10.1016/0006-2952(88)90339-5. [DOI] [PubMed] [Google Scholar]
  36. Liscovitch M. Phosphatidylethanol biosynthesis in ethanol-exposed NG108-15 neuroblastoma X glioma hybrid cells. Evidence for activation of a phospholipase D phosphatidyl transferase activity by protein kinase C. J Biol Chem. 1989 Jan 25;264(3):1450–1456. [PubMed] [Google Scholar]
  37. Lu D. J., Grinstein S. ATP and guanine nucleotide dependence of neutrophil activation. Evidence for the involvement of two distinct GTP-binding proteins. J Biol Chem. 1990 Aug 15;265(23):13721–13729. [PubMed] [Google Scholar]
  38. Löffelholz K. Receptor regulation of choline phospholipid hydrolysis. A novel source of diacylglycerol and phosphatidic acid. Biochem Pharmacol. 1989 May 15;38(10):1543–1549. doi: 10.1016/0006-2952(89)90299-2. [DOI] [PubMed] [Google Scholar]
  39. Martin T. F. Hormone-regulated phosphoinositide turnover in permeabilized cells and membranes. Methods Enzymol. 1987;141:111–126. doi: 10.1016/0076-6879(87)41060-4. [DOI] [PubMed] [Google Scholar]
  40. Martin T. F., Lucas D. O., Bajjalieh S. M., Kowalchyk J. A. Thyrotropin-releasing hormone activates a Ca2+-dependent polyphosphoinositide phosphodiesterase in permeable GH3 cells. GTP gamma S potentiation by a cholera and pertussis toxin-insensitive mechanism. J Biol Chem. 1986 Feb 25;261(6):2918–2927. [PubMed] [Google Scholar]
  41. Martin T. W., Feldman D. R., Goldstein K. E., Wagner J. R. Long-term phorbol ester treatment dissociates phospholipase D activation from phosphoinositide hydrolysis and prostacyclin synthesis in endothelial cells stimulated with bradykinin. Biochem Biophys Res Commun. 1989 Nov 30;165(1):319–326. doi: 10.1016/0006-291x(89)91072-3. [DOI] [PubMed] [Google Scholar]
  42. Martin T. W., Michaelis K. P2-purinergic agonists stimulate phosphodiesteratic cleavage of phosphatidylcholine in endothelial cells. Evidence for activation of phospholipase D. J Biol Chem. 1989 May 25;264(15):8847–8856. [PubMed] [Google Scholar]
  43. Mullmann T. J., Siegel M. I., Egan R. W., Billah M. M. Complement C5a activation of phospholipase D in human neutrophils. A major route to the production of phosphatidates and diglycerides. J Immunol. 1990 Mar 1;144(5):1901–1908. [PubMed] [Google Scholar]
  44. Nakamura K., Handa S. Coomassie brilliant blue staining of lipids on thin-layer plates. Anal Biochem. 1984 Nov 1;142(2):406–410. doi: 10.1016/0003-2697(84)90484-6. [DOI] [PubMed] [Google Scholar]
  45. Nasmith P. E., Mills G. B., Grinstein S. Guanine nucleotides induce tyrosine phosphorylation and activation of the respiratory burst in neutrophils. Biochem J. 1989 Feb 1;257(3):893–897. doi: 10.1042/bj2570893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pai J. K., Siegel M. I., Egan R. W., Billah M. M. Phospholipase D catalyzes phospholipid metabolism in chemotactic peptide-stimulated HL-60 granulocytes. J Biol Chem. 1988 Sep 5;263(25):12472–12477. [PubMed] [Google Scholar]
  47. Qian Z., Drewes L. R. Muscarinic acetylcholine receptor regulates phosphatidylcholine phospholipase D in canine brain. J Biol Chem. 1989 Dec 25;264(36):21720–21724. [PubMed] [Google Scholar]
  48. Reinhold S. L., Prescott S. M., Zimmerman G. A., McIntyre T. M. Activation of human neutrophil phospholipase D by three separable mechanisms. FASEB J. 1990 Feb 1;4(2):208–214. doi: 10.1096/fasebj.4.2.2105252. [DOI] [PubMed] [Google Scholar]
  49. Rhee S. G., Suh P. G., Ryu S. H., Lee S. Y. Studies of inositol phospholipid-specific phospholipase C. Science. 1989 May 5;244(4904):546–550. doi: 10.1126/science.2541501. [DOI] [PubMed] [Google Scholar]
  50. Rubin R. Phosphatidylethanol formation in human platelets: evidence for thrombin-induced activation of phospholipase D. Biochem Biophys Res Commun. 1988 Nov 15;156(3):1090–1096. doi: 10.1016/s0006-291x(88)80744-7. [DOI] [PubMed] [Google Scholar]
  51. Smolen J. E., Sandborg R. R. Ca2(+)-induced secretion by electropermeabilized human neutrophils. The roles of Ca2+, nucleotides and protein kinase C. Biochim Biophys Acta. 1990 Apr 9;1052(1):133–142. doi: 10.1016/0167-4889(90)90068-o. [DOI] [PubMed] [Google Scholar]
  52. Stutchfield J., Cockcroft S. Guanine nucleotides stimulate polyphosphoinositide phosphodiesterase and exocytotic secretion from HL60 cells permeabilized with streptolysin O. Biochem J. 1988 Mar 1;250(2):375–382. doi: 10.1042/bj2500375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Tettenborn C. S., Mueller G. C. 12-O-tetradecanoylphorbol-13-acetate activates phosphatidylethanol and phosphatidylglycerol synthesis by phospholipase D in cell lysates. Biochem Biophys Res Commun. 1988 Aug 30;155(1):249–255. doi: 10.1016/s0006-291x(88)81076-3. [DOI] [PubMed] [Google Scholar]
  54. Trudel S., Downey G. P., Grinstein S., Pâquet M. R. Activation of permeabilized HL60 cells by vanadate. Evidence for divergent signalling pathways. Biochem J. 1990 Jul 1;269(1):127–131. doi: 10.1042/bj2690127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Van der Meulen J., Haslam R. J. Phorbol ester treatment of intact rabbit platelets greatly enhances both the basal and guanosine 5'-[gamma-thio]triphosphate-stimulated phospholipase D activities of isolated platelet membranes. Physiological activation of phospholipase D may be secondary to activation of phospholipase C. Biochem J. 1990 Nov 1;271(3):693–700. doi: 10.1042/bj2710693. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES