Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Oct 1;279(Pt 1):87–94. doi: 10.1042/bj2790087

The kinetics of substrate-induced inactivation.

S G Waley 1
PMCID: PMC1151550  PMID: 1930157

Abstract

The kinetics of a branched-pathway mechanism for a simple enzymic reaction were studied. In this mechanism there is reversible formation of an inactive form of the second complex along the pathway. This substrate-induced inactivation typically results in the progress curve showing a burst. Three parameters can be obtained from the progress curve: the initial rate, the final rate and the rate constant characterizing the transient. The rate constant for the conversion of the inactive form of the complex into the active form can be obtained either from these parameters or by measuring the regain of enzymic activity. The partition ratio can also be obtained from the three parameters; this is the ratio of the rate of conversion of complex into product to the rate of conversion of complex into inactive form. Simulations give guidance to the conditions required for accurate determinations of the rate constants.

Full text

PDF
87

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ainslie G. R., Jr, Shill J. P., Neet K. E. Transients and cooperativity. A slow transition model for relating transients and cooperative kinetics of enzymes. J Biol Chem. 1972 Nov 10;247(21):7088–7096. [PubMed] [Google Scholar]
  2. Barshop B. A., Wrenn R. F., Frieden C. Analysis of numerical methods for computer simulation of kinetic processes: development of KINSIM--a flexible, portable system. Anal Biochem. 1983 Apr 1;130(1):134–145. doi: 10.1016/0003-2697(83)90660-7. [DOI] [PubMed] [Google Scholar]
  3. Bicknell R., Waley S. G. Cryoenzymology of Bacillus cereus beta-lactamase II. Biochemistry. 1985 Nov 19;24(24):6876–6887. doi: 10.1021/bi00345a021. [DOI] [PubMed] [Google Scholar]
  4. Burke M. A., Maini P. K., Murray J. D. On the kinetics of suicide substrates. Biophys Chem. 1990 Aug 31;37(1-3):81–90. doi: 10.1016/0301-4622(90)88009-h. [DOI] [PubMed] [Google Scholar]
  5. Charnas R. L., Knowles J. R. Inhibition of the RTEM beta-lactamase from Escherichia coli. Interaction of enzyme with derivatives of olivanic acid. Biochemistry. 1981 May 12;20(10):2732–2737. doi: 10.1021/bi00513a005. [DOI] [PubMed] [Google Scholar]
  6. Cheron G., Noat G., Ricard J. Hysteresis of plant cell-wall beta-glucosidase. Biochem J. 1990 Jul 15;269(2):389–392. doi: 10.1042/bj2690389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Citri N., Samuni A., Zyk N. Acquisition of substrate-specific parameters during the catalytic reaction of penicillinase. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1048–1052. doi: 10.1073/pnas.73.4.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crompton I. E., Cuthbert B. K., Lowe G., Waley S. G. Beta-lactamase inhibitors. The inhibition of serine beta-lactamases by specific boronic acids. Biochem J. 1988 Apr 15;251(2):453–459. doi: 10.1042/bj2510453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fink A. L., Behner K. M., Tan A. K. Kinetic and structural characterization of reversibly inactivated beta-lactamase. Biochemistry. 1987 Jul 14;26(14):4248–4258. doi: 10.1021/bi00388a011. [DOI] [PubMed] [Google Scholar]
  10. Fisher J., Charnas R. L., Knowles J. R. Kinetic studies on the inactivation of Escherichia coli RTEM beta-lactamase by clavulanic acid. Biochemistry. 1978 May 30;17(11):2180–2184. doi: 10.1021/bi00604a024. [DOI] [PubMed] [Google Scholar]
  11. Frieden C. Kinetic aspects of regulation of metabolic processes. The hysteretic enzyme concept. J Biol Chem. 1970 Nov 10;245(21):5788–5799. [PubMed] [Google Scholar]
  12. Frieden C. Kinetic aspects of regulation of metabolic processes. The hysteretic enzyme concept. J Biol Chem. 1970 Nov 10;245(21):5788–5799. [PubMed] [Google Scholar]
  13. Frieden C. Slow transitions and hysteretic behavior in enzymes. Annu Rev Biochem. 1979;48:471–489. doi: 10.1146/annurev.bi.48.070179.002351. [DOI] [PubMed] [Google Scholar]
  14. Frère J. M., Dormans C., Duyckaerts C., De Graeve J. Interaction of beta-iodopenicillanate with the beta-lactamases of Streptomyces albus G and Actinomadura R39. Biochem J. 1982 Dec 1;207(3):437–444. doi: 10.1042/bj2070437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Frère J. M., Dormans C., Lenzini V. M., Duyckaerts C. Interaction of clavulanate with the beta-lactamases of Streptomyces albus G and Actinomadura R39. Biochem J. 1982 Dec 1;207(3):429–436. doi: 10.1042/bj2070429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Frère J. M. Interaction between serine beta-lactamases and class A substrates: a kinetic analysis and a reaction pathway hypothesis. Biochem Pharmacol. 1981 Mar 15;30(6):549–552. doi: 10.1016/0006-2952(81)90124-6. [DOI] [PubMed] [Google Scholar]
  17. Kiener P. A., Knott-Hunziker V., Petursson S., Waley S. G. Mechanism of substrate-induced inactivation of beta-lactamase I. Eur J Biochem. 1980 Aug;109(2):575–580. doi: 10.1111/j.1432-1033.1980.tb04830.x. [DOI] [PubMed] [Google Scholar]
  18. Monks J., Waley S. G. Imipenem as substrate and inhibitor of beta-lactamases. Biochem J. 1988 Jul 15;253(2):323–328. doi: 10.1042/bj2530323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morrison J. F., Walsh C. T. The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol. 1988;61:201–301. doi: 10.1002/9780470123072.ch5. [DOI] [PubMed] [Google Scholar]
  20. Neet K. E., Ainslie G. R., Jr Hysteretic enzymes. Methods Enzymol. 1980;64:192–226. doi: 10.1016/s0076-6879(80)64010-5. [DOI] [PubMed] [Google Scholar]
  21. O'Fagain C., Bond U., Orsi B. A., Mantle T. J. The slow kinetic transients of arylsulphatase A. Biochem J. 1982 Feb 1;201(2):345–352. doi: 10.1042/bj2010345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Persaud K. C., Pain R. H., Virden R. Reversible deactivation of beta-lactamase by quinacillin. Extent of the conformational change in the isolated transitory complex. Biochem J. 1986 Aug 1;237(3):723–730. doi: 10.1042/bj2370723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Roy A. B., Mantle T. J. The anomalous kinetics of sulphatase A. Biochem J. 1989 Aug 1;261(3):689–697. doi: 10.1042/bj2610689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tatsunami S., Yago N., Hosoe M. Kinetics of suicide substrates. Steady-state treatments and computer-aided exact solutions. Biochim Biophys Acta. 1981 Dec 15;662(2):226–235. doi: 10.1016/0005-2744(81)90034-6. [DOI] [PubMed] [Google Scholar]
  25. Tudela J., García Cánovas F., Varón R., García Carmona F., Gálvez J., Lozano J. A. Transient-phase kinetics of enzyme inactivation induced by suicide substrates. Biochim Biophys Acta. 1987 Apr 30;912(3):408–416. doi: 10.1016/0167-4838(87)90046-x. [DOI] [PubMed] [Google Scholar]
  26. Waley S. G. Kinetics of suicide substrates. Practical procedures for determining parameters. Biochem J. 1985 May 1;227(3):843–849. doi: 10.1042/bj2270843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Waley S. G. Kinetics of suicide substrates. Biochem J. 1980 Mar 1;185(3):771–773. doi: 10.1042/bj1850771. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES