Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Oct 1;279(Pt 1):111–114.

Interaction of beta-lactamases I and II from Bacillus cereus with semisynthetic cephamycins. Kinetic studies.

J Martin Villacorta 1, P Arriaga 1, J Laynez 1, M Menendez 1
PMCID: PMC1151553  PMID: 1930129

Abstract

The influence of C-6 alpha- or C-7 alpha-methoxylation of the beta-lactam ring in the catalytic action of class A and B beta-lactamases has been investigated. For this purpose the kinetic behaviour of beta-lactamases I (class A) and II (class B) from Bacillus cereus was analysed by using several cephamycins, moxalactam, temocillin and related antibiotics. These compounds behaved as poor substrates for beta-lactamase II, with high Km values and very low catalytic efficiencies. In the case of beta-lactamase I, the substitution of a methoxy group for a H atom at C-7 alpha or C-6 alpha decreased the affinity of the substrates for the enzyme. Furthermore, the acylation of cephamycins was completely blocked, whereas that of penicillins was slowed down by a factor of 10(4)-10(5), acylation being the rate-determining step of the process.

Full text

PDF
111

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold L. D., Viswanatha T. Thermal denaturation of native and cross-linked Bacillus cereus 569/H beta-lactamase I. Biochim Biophys Acta. 1983 Dec 12;749(2):192–197. doi: 10.1016/0167-4838(83)90252-2. [DOI] [PubMed] [Google Scholar]
  2. Bicknell R., Schäffer A., Waley S. G., Auld D. S. Changes in the coordination geometry of the active-site metal during catalysis of benzylpenicillin hydrolysis by Bacillus cereus beta-lactamase II. Biochemistry. 1986 Nov 4;25(22):7208–7215. doi: 10.1021/bi00370a066. [DOI] [PubMed] [Google Scholar]
  3. Bicknell R., Waley S. G. Cryoenzymology of Bacillus cereus beta-lactamase II. Biochemistry. 1985 Nov 19;24(24):6876–6887. doi: 10.1021/bi00345a021. [DOI] [PubMed] [Google Scholar]
  4. Cartwright S. J., Waley S. G. Cryoenzymology of beta-lactamases. Biochemistry. 1987 Aug 25;26(17):5329–5337. doi: 10.1021/bi00391a017. [DOI] [PubMed] [Google Scholar]
  5. Faraci W. S., Pratt R. F. Mechanism of inhibition of RTEM-2 beta-lactamase by cephamycins: relative importance of the 7 alpha-methoxy group and the 3' leaving group. Biochemistry. 1986 May 20;25(10):2934–2941. doi: 10.1021/bi00358a030. [DOI] [PubMed] [Google Scholar]
  6. Frère J. M., Joris B., Varetto L., Crine M. Structure-activity relationships in the beta-lactam family: an impossible dream. Biochem Pharmacol. 1988 Jan 1;37(1):125–132. doi: 10.1016/0006-2952(88)90764-2. [DOI] [PubMed] [Google Scholar]
  7. Galleni M., Amicosante G., Frère J. M. A survey of the kinetic parameters of class C beta-lactamases. Cephalosporins and other beta-lactam compounds. Biochem J. 1988 Oct 1;255(1):123–129. doi: 10.1042/bj2550123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hou J. P., Poole J. W. Kinetics of -lactamase inactivation of penicillins I: effect of side-chain structure, ionic strength, pH, and temperature. J Pharm Sci. 1973 May;62(5):783–788. doi: 10.1002/jps.2600620516. [DOI] [PubMed] [Google Scholar]
  9. Kobayashi S., Arai S., Hayashi S., Fujimoto K. Beta-lactamase stability of cefpirome (HR 810), a new cephalosporin with a broad antimicrobial spectrum. Antimicrob Agents Chemother. 1986 Nov;30(5):713–718. doi: 10.1128/aac.30.5.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lenzini M. V., Frère J. M. The beta-lactamase of Streptomyces cacaoi: interaction with cefoxitin and beta-iodopenicillanate. J Enzyme Inhib. 1985;1(1):25–34. doi: 10.3109/14756368509031279. [DOI] [PubMed] [Google Scholar]
  11. Martin M. T., Waley S. G. Kinetic characterization of the acyl-enzyme mechanism for beta-lactamase I. Biochem J. 1988 Sep 15;254(3):923–925. doi: 10.1042/bj2540923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mazzella L. J., Pratt R. F. Effect of the 3'-leaving group on turnover of cephem antibiotics by a class C beta-lactamase. Biochem J. 1989 Apr 1;259(1):255–260. doi: 10.1042/bj2590255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nagarajan R., Boeck L. D., Gorman M., Hamill R. L., Higgens C. E., Hoehn M. M., Stark W. M., Whitney J. G. Beta-lactam antibiotics from Streptomyces. J Am Chem Soc. 1971 May 5;93(9):2308–2310. doi: 10.1021/ja00738a035. [DOI] [PubMed] [Google Scholar]
  14. O'Callaghan C., Morris A. Inhibition of beta-lactamases by beta-lactam antibiotics. Antimicrob Agents Chemother. 1972 Dec;2(6):442–448. doi: 10.1128/aac.2.6.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wharton C. W., Szawelski R. J. Half-time analysis of the integrated Michaelis equation. Simulation and use of the half-time plot and its direct linear variant in the analysis of some alpha-chymotrypsin, papain- and fumarase-catalysed reactions. Biochem J. 1982 May 1;203(2):351–360. doi: 10.1042/bj2030351. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES