Abstract
The pathways of peroxisomal and mitochondrial fatty acid oxidation were monitored with the use of substrates which produce NAD3H. I used as marker substrates: D-[3-3H]3-hydroxybutyrate for mitochondrial NAD3H production, [2-3H]glycerol for cytosolic NAD3H production, and [2-3H]acetate to measure carbon-bound 3H which was also generated by the metabolism of the commercial 9,10-3H-labelled fatty acids. The assumption that peroxisomal NAD3H can be considered to be equivalent to cytosolic NAD3H was supported using a specific inhibitor of mitochondrial fatty acid oxidation. The approach involves determination of the specific yields, and the relative distribution on carbons 4 and 6, of 3H in glucose from the marker substrates and the labelled fatty acids. In hepatocytes from clofibrate-treated rats, the amount of palmitate or oleate oxidation which starts in the peroxisomes is comparable with that which starts in the mitochondria.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLOOM B. The simultaneous determination of C14 and H3 in the terminal groups of glucose. Anal Biochem. 1962 Jan;3:85–87. doi: 10.1016/0003-2697(62)90048-9. [DOI] [PubMed] [Google Scholar]
- Beaufay H., Jacques P., Baudhuin P., Sellinger O. Z., Berthet J., De Duve C. Tissue fractionation studies. 18. Resolution of mitochondrial fractions from rat liver into three distinct populations of cytoplasmic particles by means of density equilibration in various gradients. Biochem J. 1964 Jul;92(1):184–205. doi: 10.1042/bj0920184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Duve C., Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev. 1966 Apr;46(2):323–357. doi: 10.1152/physrev.1966.46.2.323. [DOI] [PubMed] [Google Scholar]
- HOBERMAN H. D., D'ADAMO A. F., Jr Coupling of oxidation of substrates to reductive biosyntheses. IV. Studies with 2, 2'-D-fumarate and 2,2'-C14-fumarate. J Biol Chem. 1960 Feb;235:519–522. [PubMed] [Google Scholar]
- Katz J., Wals P. A., Rognstad R. Glucose phosphorylation, glucose-6-phosphatase, and recycling in rat hepatocytes. J Biol Chem. 1978 Jul 10;253(13):4530–4536. [PubMed] [Google Scholar]
- Kondrup J., Lazarow P. B. Flux of palmitate through the peroxisomal and mitochondrial beta-oxidation systems in isolated rat hepatocytes. Biochim Biophys Acta. 1985 Jun 14;835(1):147–153. doi: 10.1016/0005-2760(85)90041-4. [DOI] [PubMed] [Google Scholar]
- Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mannaerts G. P., Debeer L. J., Thomas J., De Schepper P. J. Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats. J Biol Chem. 1979 Jun 10;254(11):4585–4595. [PubMed] [Google Scholar]
- Masters C., Holmes R. Peroxisomes: new aspects of cell physiology and biochemistry. Physiol Rev. 1977 Oct;57(4):816–882. doi: 10.1152/physrev.1977.57.4.816. [DOI] [PubMed] [Google Scholar]
- Ochs R. S., Harris R. A. Mechanism for the oleate stimulation of gluconeogenesis from dihydroxyacetone by hepatocytes from fasted rats. Biochim Biophys Acta. 1986 Apr 8;886(1):40–47. doi: 10.1016/0167-4889(86)90209-0. [DOI] [PubMed] [Google Scholar]
- Olson M. J., Thurman R. G. Quantitation of ketogenesis in periportal and pericentral regions of the liver lobule. Arch Biochem Biophys. 1987 Feb 15;253(1):26–37. doi: 10.1016/0003-9861(87)90633-3. [DOI] [PubMed] [Google Scholar]
- Quistorff B. Gluconeogenesis in periportal and perivenous hepatocytes of rat liver, isolated by a new high-yield digitonin/collagenase perfusion technique. Biochem J. 1985 Jul 1;229(1):221–226. doi: 10.1042/bj2290221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rognstad R., Clark D. G. Tritium as a tracer for reducing equivalents in isolated liver cells. Eur J Biochem. 1974 Feb 15;42(1):51–60. doi: 10.1111/j.1432-1033.1974.tb03313.x. [DOI] [PubMed] [Google Scholar]
- Rognstad R. Control of ethanol utilization by rat hepatocytes. Biochim Biophys Acta. 1981 Aug 17;676(2):270–273. doi: 10.1016/0304-4165(81)90196-3. [DOI] [PubMed] [Google Scholar]
- Rose I. A., O'Connell E. L., Noce P., Utter M. F., Wood H. G., Willard J. M., Cooper T. G., Benziman M. Stereochemistry of the enzymatic carboxylation of phosphoenolpyruvate. J Biol Chem. 1969 Nov 25;244(22):6130–6133. [PubMed] [Google Scholar]
- Van Veldhoven P. P., Just W. W., Mannaerts G. P. Permeability of the peroxisomal membrane to cofactors of beta-oxidation. Evidence for the presence of a pore-forming protein. J Biol Chem. 1987 Mar 25;262(9):4310–4318. [PubMed] [Google Scholar]
- Westerfeld W. W., Richert D. A., Ruegamer W. R. The role of the thyroid hormone in the effect of p-chlorophenoxyisobutyrate in rats. Biochem Pharmacol. 1968 Jun;17(6):1003–1016. doi: 10.1016/0006-2952(68)90359-6. [DOI] [PubMed] [Google Scholar]