Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Oct 1;279(Pt 1):175–187. doi: 10.1042/bj2790175

Evidence for sterol-independent regulation of low-density lipoprotein receptor activity in Hep-G2 cells.

J L Ellsworth 1, C Chandrasekaran 1, A D Cooper 1
PMCID: PMC1151564  PMID: 1930137

Abstract

The relationship between the serum factor(s)-mediated induction of low-density lipoprotein (LDL) receptor activity and changes in cellular cholesterol metabolism was examined in the human hepatoma cell line Hep-G2. Relative to incubation with serum-free media [Eagle's minimal essential medium (MEM) control], short-term (less than 8 h) incubation with medium containing 15% of either calf serum (MEM + serum) or the d greater than 1.25 fraction of calf serum (MEM + d greater than 1.25) produced a time- and concentration-dependent increase in the uptake of 125I-LDL. Immunoblotting with anti-(LDL receptor) antibodies demonstrated that this was correlated with a 2-fold increase in the amount of the mature 136,000 Da LDL receptor protein in detergent-solubilized Hep-G2 cell membranes. Incubation with MEM + serum, but not MEM + d greater than 1.25, increased the efflux of radiolabelled cholesterol from Hep-G2 cells. However, the induction of 125I-LDL uptake by MEM + d greater than 1.25 (2.3-fold) and MEM + serum (2.2-fold) was virtually identical. Addition of the d less than 1.063 lipoproteins of calf serum to MEM + d greater than 1.25 at their original or three times their serum concentration decreased the induction of 125I-LDL uptake by MEM + d greater than 1.25 by only 20-30%. Together, these results suggest that the stimulation of 125I-LDL uptake was not due to the presence of high-density lipoprotein, the absence of LDL or the stimulation of cholesterol efflux. MEM + serum stimulated 125I-LDL uptake in cells cholesterol-loaded by incubation with rat very-low-density lipoprotein with beta electrophoretic mobility (beta-VLDL). Compared to incubation with the MEM control, either MEM + serum or MEM + d greater than 1.25 produced time-dependent increases in the activity of 3-hydroxy-3-methylglutaryl-CoA reductase which also occurred in cholesterol-loaded cells. However, cholesterol biosynthesis, whether measured from 3H2O, [14C]acetate or [3H]mevalonic acid, was not increased. Incubation with MEM + serum or MEM + d greater than 1.25 did not affect [3H]oleate incorporation into cellular cholesteryl esters, hydrolysis of intracellular [3H]cholesteryl esters or the cellular mass of unesterified or esterified cholesterol. Incubation with MEM + serum or MEM + d greater than 1.25 produced a transient increase in the level of LDL receptor mRNA, reaching a maximum of 5-10-fold by 2 h and decreasing to near baseline levels by 4 h. Actinomycin D blocked the serum-factor-mediated induction of LDL receptor mRNA.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
175

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attie A. D., Pittman R. C., Steinberg D. Hepatic catabolism of low density lipoprotein: mechanisms and metabolic consequences. Hepatology. 1982 Mar-Apr;2(2):269–281. doi: 10.1002/hep.1840020215. [DOI] [PubMed] [Google Scholar]
  2. Brown M. S., Goldstein J. L. Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell. 1975 Nov;6(3):307–316. doi: 10.1016/0092-8674(75)90182-8. [DOI] [PubMed] [Google Scholar]
  3. Brown M. S., Kovanen P. T., Goldstein J. L. Receptor-mediated uptake of lipoprotein-cholesterol and its utilization for steroid synthesis in the adrenal cortex. Recent Prog Horm Res. 1979;35:215–257. doi: 10.1016/b978-0-12-571135-7.50009-6. [DOI] [PubMed] [Google Scholar]
  4. Carew T. E., Pittman R. C., Steinberg D. Tissue sites of degradation of native and reductively methylated [14C]sucrose-labeled low density lipoprotein in rats. Contribution of receptor-dependent and receptor-independent pathways. J Biol Chem. 1982 Jul 25;257(14):8001–8008. [PubMed] [Google Scholar]
  5. Chait A., Bierman E. L., Albers J. J. Low-density lipoprotein receptor activity in cultured human skin fibroblasts. Mechanism of insulin-induced stimulation. J Clin Invest. 1979 Nov;64(5):1309–1319. doi: 10.1172/JCI109587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chait A., Bierman E. L., Albers J. J. Regulatory role of triiodothyronine in the degradation of low density lipoprotein by cultured human skin fibroblasts. J Clin Endocrinol Metab. 1979 May;48(5):887–889. doi: 10.1210/jcem-48-5-887. [DOI] [PubMed] [Google Scholar]
  7. Chait A., Ross R., Albers J. J., Bierman E. L. Platelet-derived growth factor stimulates activity of low density lipoprotein receptors. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4084–4088. doi: 10.1073/pnas.77.7.4084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chait A., Ross R., Bierman E. L. Stimulation of receptor-dependent and receptor-independent pathways of low-density lipoprotein degradation in arterial smooth muscle cells by platelet-derived growth factor. Biochim Biophys Acta. 1988 May 22;960(2):183–189. doi: 10.1016/0005-2760(88)90063-x. [DOI] [PubMed] [Google Scholar]
  9. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  10. Cooper A. D., Nutik R., Chen J. Characterization of the estrogen-induced lipoprotein receptor of rat liver. J Lipid Res. 1987 Jan;28(1):59–68. [PubMed] [Google Scholar]
  11. Cooper A. D. Role of the liver in the degradation of lipoproteins. Gastroenterology. 1985 Jan;88(1 Pt 1):192–205. doi: 10.1016/s0016-5085(85)80155-4. [DOI] [PubMed] [Google Scholar]
  12. Cuthbert J. A., Lipsky P. E. Mitogenic stimulation alters the regulation of LDL receptor gene expression in human lymphocytes. J Lipid Res. 1990 Nov;31(11):2067–2078. [PubMed] [Google Scholar]
  13. Cuthbert J. A., Russell D. W., Lipsky P. E. Regulation of low density lipoprotein receptor gene expression in human lymphocytes. J Biol Chem. 1989 Jan 15;264(2):1298–1304. [PubMed] [Google Scholar]
  14. Davies P. F., Kerr C. Modification of low density lipoprotein metabolism by growth factors in cultured vascular cells and human skin fibroblasts. Dependence upon duration of exposure. Biochim Biophys Acta. 1982 Jul 20;712(1):26–32. doi: 10.1016/0005-2760(82)90080-7. [DOI] [PubMed] [Google Scholar]
  15. Davis R. A., Kern F., Jr, Showalter R., Sutherland E., Sinensky M., Simon F. R. Alterations of hepatic Na+,K+-atpase and bile flow by estrogen: effects on liver surface membrane lipid structure and function. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4130–4134. doi: 10.1073/pnas.75.9.4130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dawson P. A., Hofmann S. L., van der Westhuyzen D. R., Südhof T. C., Brown M. S., Goldstein J. L. Sterol-dependent repression of low density lipoprotein receptor promoter mediated by 16-base pair sequence adjacent to binding site for transcription factor Sp1. J Biol Chem. 1988 Mar 5;263(7):3372–3379. [PubMed] [Google Scholar]
  17. Eckardt H., Filipovic I., Hasilik A., Buddecke E. Calmodulin antagonists increase the amount of mRNA for the low-density-lipoprotein receptor in skin fibroblasts. Biochem J. 1988 Jun 15;252(3):889–892. doi: 10.1042/bj2520889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Edge S. B., Hoeg J. M., Triche T., Schneider P. D., Brewer H. B., Jr Cultured human hepatocytes. Evidence for metabolism of low density lipoproteins by a pathway independent of the classical low density lipoprotein receptor. J Biol Chem. 1986 Mar 15;261(8):3800–3806. [PubMed] [Google Scholar]
  19. Ellsworth J. L., Brown C., Cooper A. D. Stimulation of LDL receptor activity in Hep-G2 cells by a serum factor(s). J Cell Physiol. 1988 May;135(2):213–223. doi: 10.1002/jcp.1041350208. [DOI] [PubMed] [Google Scholar]
  20. Ellsworth J. L., Cooper A. D., Kraemer F. B. Evidence that chylomicron remnants and beta-VLDL are transported by the same receptor pathway in J774 murine macrophage-derived cells. J Lipid Res. 1986 Oct;27(10):1062–1072. [PubMed] [Google Scholar]
  21. Ellsworth J. L., Erickson S. K., Cooper A. D. Very low and low density lipoprotein synthesis and secretion by the human hepatoma cell line Hep-G2: effects of free fatty acid. J Lipid Res. 1986 Aug;27(8):858–874. [PubMed] [Google Scholar]
  22. Ellsworth J. L., Kraemer F. B., Cooper A. D. Transport of beta-very low density lipoproteins and chylomicron remnants by macrophages is mediated by the low density lipoprotein receptor pathway. J Biol Chem. 1987 Feb 15;262(5):2316–2325. [PubMed] [Google Scholar]
  23. Erba H. P., Gunning P., Kedes L. Nucleotide sequence of the human gamma cytoskeletal actin mRNA: anomalous evolution of vertebrate non-muscle actin genes. Nucleic Acids Res. 1986 Jul 11;14(13):5275–5294. doi: 10.1093/nar/14.13.5275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Faust J. R., Goldstein J. L., Brown M. S. Receptor-mediated uptake of low density lipoprotein and utilization of its cholesterol for steroid synthesis in cultured mouse adrenal cells. J Biol Chem. 1977 Jul 25;252(14):4861–4871. [PubMed] [Google Scholar]
  25. Filipovic I., Buddecke E. Calcium channel blockers stimulate LDL receptor synthesis in human skin fibroblasts. Biochem Biophys Res Commun. 1986 May 14;136(3):845–850. doi: 10.1016/0006-291x(86)90409-2. [DOI] [PubMed] [Google Scholar]
  26. Filipovic I., Buddecke E. Calmodulin antagonists stimulate LDL receptor synthesis in human skin fibroblasts. Biochim Biophys Acta. 1986 Mar 21;876(1):124–132. doi: 10.1016/0005-2760(86)90325-5. [DOI] [PubMed] [Google Scholar]
  27. Fuki I. V., Preobrazhensky S. N., Misharin AYu, Bushmakina N. G., Menschikov G. B., Repin V. S., Karpov R. S. Effect of cell cholesterol content on apolipoprotein B secretion and LDL receptor activity in the human hepatoma cell line, HepG2. Biochim Biophys Acta. 1989 Feb 6;1001(2):235–238. doi: 10.1016/0005-2760(89)90153-7. [DOI] [PubMed] [Google Scholar]
  28. Gibbons G. F., Björnsson O. G., Pullinger C. R. Evidence that changes in hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity are required partly to maintain a constant rate of sterol synthesis. J Biol Chem. 1984 Dec 10;259(23):14399–14405. [PubMed] [Google Scholar]
  29. Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
  30. Goldstein J. L., Brown M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930. doi: 10.1146/annurev.bi.46.070177.004341. [DOI] [PubMed] [Google Scholar]
  31. Golos T. G., Soto E. A., Tureck R. W., Strauss J. F., 3rd Human chorionic gonadotropin and 8-bromo-adenosine 3',5'-monophosphate stimulate [125I]low density lipoprotein uptake and metabolism by luteinized human granulosa cells in culture. J Clin Endocrinol Metab. 1985 Oct;61(4):633–638. doi: 10.1210/jcem-61-4-633. [DOI] [PubMed] [Google Scholar]
  32. Golos T. G., Strauss J. F., 3rd Regulation of low density lipoprotein receptor synthesis in cultured luteinized human granulosa cells by human chorionic gonadotropin and 8-bromo-cyclic AMP. J Biol Chem. 1985 Nov 25;260(27):14399–14402. [PubMed] [Google Scholar]
  33. Havekes L. M., Schouten D., de Wit E. C., Cohen L. H., Griffioen M., van Hinsbergh V. W., Princen H. M. Stimulation of the LDL receptor activity in the human hepatoma cell line Hep G2 by high-density serum fractions. Biochim Biophys Acta. 1986 Feb 12;875(2):236–246. doi: 10.1016/0005-2760(86)90173-6. [DOI] [PubMed] [Google Scholar]
  34. Havekes L. M., Verboom H., de Wit E., Yap S. H., Princen H. M. Regulation of low density lipoprotein receptor activity in primary cultures of human hepatocytes by serum lipoproteins. Hepatology. 1986 Nov-Dec;6(6):1356–1360. doi: 10.1002/hep.1840060623. [DOI] [PubMed] [Google Scholar]
  35. Havekes L. M., de Wit E. C., Princen H. M. Cellular free cholesterol in Hep G2 cells is only partially available for down-regulation of low-density-lipoprotein receptor activity. Biochem J. 1987 Nov 1;247(3):739–746. doi: 10.1042/bj2470739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Jackson R. L., Gotto A. M., Stein O., Stein Y. A comparative study on the removal of cellular lipids from Landschütz ascites cells by human plasma apolipoproteins. J Biol Chem. 1975 Sep 25;250(18):7204–7209. [PubMed] [Google Scholar]
  37. Keefee E. B., Scharschmidt B. F., Blankenship N. M., Ockner R. K. Studies of relationship among bile flow, liver plasma membrane NaK-ATPase, and membrane microviscosity in the rat. J Clin Invest. 1979 Dec;64(6):1590–1598. doi: 10.1172/JCI109620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kesaniemi Y. A., Witztum J. L., Steinbrecher U. P. Receptor-mediated catabolism of low density lipoprotein in man. Quantitation using glucosylated low density lipoprotein. J Clin Invest. 1983 Apr;71(4):950–959. doi: 10.1172/JCI110849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Kosykh V. A., Preobrazhensky S. N., Ivanov V. O., Tsibulsky V. P., Repin V. S., Smirnov V. N. High-affinity association and degradation of 125I-labelled low density lipoproteins by human hepatocytes in primary culture. FEBS Lett. 1985 Apr 8;183(1):17–20. doi: 10.1016/0014-5793(85)80944-3. [DOI] [PubMed] [Google Scholar]
  40. Langridge J., Langridge P., Bergquist P. L. Extraction of nucleic acids from agarose gels. Anal Biochem. 1980 Apr;103(2):264–271. doi: 10.1016/0003-2697(80)90266-3. [DOI] [PubMed] [Google Scholar]
  41. Maltese W. A., Aprille J. R. Relation of mevalonate synthesis to mitochondrial ubiquinone content and respiratory function in cultured neuroblastoma cells. J Biol Chem. 1985 Sep 25;260(21):11524–11529. [PubMed] [Google Scholar]
  42. Mazzone T., Basheeruddin K., Ping L., Schick C. Relation of growth- and sterol-related regulatory pathways for low density lipoprotein receptor gene expression. J Biol Chem. 1990 Mar 25;265(9):5145–5149. [PubMed] [Google Scholar]
  43. Nenseter M. S., Blomhoff R., Drevon C. A., Kindberg G. M., Norum K. R., Berg T. Uptake of LDL in parenchymal and non-parenchymal rabbit liver cells in vivo. LDL uptake is increased in endothelial cells in cholesterol-fed rabbits. Biochem J. 1988 Sep 1;254(2):443–448. doi: 10.1042/bj2540443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Nicolosi R. J., Stucchi A. F., Kowala M. C., Hennessy L. K., Hegsted D. M., Schaefer E. J. Effect of dietary fat saturation and cholesterol on LDL composition and metabolism. In vivo studies of receptor and nonreceptor-mediated catabolism of LDL in cebus monkeys. Arteriosclerosis. 1990 Jan-Feb;10(1):119–128. doi: 10.1161/01.atv.10.1.119. [DOI] [PubMed] [Google Scholar]
  45. Nonomura K., Obara T., Strott C. A. Low density lipoprotein receptor activity in the guinea pig adrenal cortex. I. Zonal characterization and response to adrenocorticotropin. Endocrinology. 1986 Feb;118(2):653–660. doi: 10.1210/endo-118-2-653. [DOI] [PubMed] [Google Scholar]
  46. Norman C., Runswick M., Pollock R., Treisman R. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell. 1988 Dec 23;55(6):989–1003. doi: 10.1016/0092-8674(88)90244-9. [DOI] [PubMed] [Google Scholar]
  47. Oram J. F., Albers J. J., Cheung M. C., Bierman E. L. The effects of subfractions of high density lipoprotein on cholesterol efflux from cultured fibroblasts. Regulation of low density lipoprotein receptor activity. J Biol Chem. 1981 Aug 25;256(16):8348–8356. [PubMed] [Google Scholar]
  48. Pangburn S. H., Newton R. S., Chang C. M., Weinstein D. B., Steinberg D. Receptor-mediated catabolism of homologous low density lipoproteins in cultured pig hepatocytes. J Biol Chem. 1981 Apr 10;256(7):3340–3347. [PubMed] [Google Scholar]
  49. Pittman R. C., Steinberg D. Sites and mechanisms of uptake and degradation of high density and low density lipoproteins. J Lipid Res. 1984 Dec 15;25(13):1577–1585. [PubMed] [Google Scholar]
  50. Ranganathan S., Harmony J. A., Jackson R. J. Effect of Ca2+ blocking agents on the metabolism of low density lipoproteins in human skin fibroblasts. Biochem Biophys Res Commun. 1982 Jul 16;107(1):217–224. doi: 10.1016/0006-291x(82)91691-6. [DOI] [PubMed] [Google Scholar]
  51. Reagan J. W., Jr, Miller L. R., St Clair R. W. In vivo clearance of low density lipoprotein in pigeons occurs by a receptor-like mechanism that is not down-regulated by cholesterol feeding. J Biol Chem. 1990 Jun 5;265(16):9381–9391. [PubMed] [Google Scholar]
  52. Rollins B. J., Stiles C. D. Serum-inducible genes. Adv Cancer Res. 1989;53:1–32. doi: 10.1016/s0065-230x(08)60277-8. [DOI] [PubMed] [Google Scholar]
  53. Salter A. M., Bugaut M., Saxton J., Fisher S. C., Brindley D. N. Effects of preincubation of primary monolayer cultures of rat hepatocytes with low- and high-density lipoproteins on the subsequent binding and metabolism of human low-density lipoprotein. Biochem J. 1987 Oct 1;247(1):79–84. doi: 10.1042/bj2470079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Salter A. M., Fisher S. C., Brindley D. N. Binding of low-density lipoprotein to monolayer cultures of rat hepatocytes is increased by insulin and decreased by dexamethasone. FEBS Lett. 1987 Aug 10;220(1):159–162. doi: 10.1016/0014-5793(87)80895-5. [DOI] [PubMed] [Google Scholar]
  55. Salter A. M., Fisher S. C., Brindley D. N. Interactions of triiodothyronine, insulin and dexamethasone on the binding of human LDL to rat hepatocytes in monolayer culture. Atherosclerosis. 1988 May;71(1):77–80. doi: 10.1016/0021-9150(88)90304-8. [DOI] [PubMed] [Google Scholar]
  56. Savion N., Laherty R., Lui G. M., Gospodarowicz D. Modulation of low density lipoprotein metabolism in bovine granulosa cells as a function of their steroidogenic activity. J Biol Chem. 1981 Dec 25;256(24):12817–12822. [PubMed] [Google Scholar]
  57. Semenkovich C. F., Ostlund R. E., Jr Estrogens induce low-density lipoprotein receptor activity and decrease intracellular cholesterol in human hepatoma cell line Hep G2. Biochemistry. 1987 Aug 11;26(16):4987–4992. doi: 10.1021/bi00390a016. [DOI] [PubMed] [Google Scholar]
  58. Spady D. K., Bilheimer D. W., Dietschy J. M. Rates of receptor-dependent and -independent low density lipoprotein uptake in the hamster. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3499–3503. doi: 10.1073/pnas.80.11.3499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Spady D. K., Turley S. D., Dietschy J. M. Rates of low density lipoprotein uptake and cholesterol synthesis are regulated independently in the liver. J Lipid Res. 1985 Apr;26(4):465–472. [PubMed] [Google Scholar]
  60. Spiess M., Lodish H. F. Sequence of a second human asialoglycoprotein receptor: conservation of two receptor genes during evolution. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6465–6469. doi: 10.1073/pnas.82.19.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Stein O., Leitersdorf E., Stein Y. Verapamil enhances receptor-mediated endocytosis of low density lipoproteins by aortic cells in culture. Arteriosclerosis. 1985 Jan-Feb;5(1):35–44. doi: 10.1161/01.atv.5.1.35. [DOI] [PubMed] [Google Scholar]
  62. Suckling K. E., Stange E. F. Role of acyl-CoA: cholesterol acyltransferase in cellular cholesterol metabolism. J Lipid Res. 1985 Jun;26(6):647–671. [PubMed] [Google Scholar]
  63. Südhof T. C., Russell D. W., Brown M. S., Goldstein J. L. 42 bp element from LDL receptor gene confers end-product repression by sterols when inserted into viral TK promoter. Cell. 1987 Mar 27;48(6):1061–1069. doi: 10.1016/0092-8674(87)90713-6. [DOI] [PubMed] [Google Scholar]
  64. Südhof T. C., Van der Westhuyzen D. R., Goldstein J. L., Brown M. S., Russell D. W. Three direct repeats and a TATA-like sequence are required for regulated expression of the human low density lipoprotein receptor gene. J Biol Chem. 1987 Aug 5;262(22):10773–10779. [PubMed] [Google Scholar]
  65. Toaff M. E., Schleyer H., Strauss J. F., 3rd Metabolism of 25-hydroxycholesterol by rat luteal mitochondria and dispersed cells. Endocrinology. 1982 Dec;111(6):1785–1790. doi: 10.1210/endo-111-6-1785. [DOI] [PubMed] [Google Scholar]
  66. Weisgraber K. H., Innerarity T. L., Mahley R. W. Role of lysine residues of plasma lipoproteins in high affinity binding to cell surface receptors on human fibroblasts. J Biol Chem. 1978 Dec 25;253(24):9053–9062. [PubMed] [Google Scholar]
  67. Witte L. D., Cornicelli J. A., Miller R. W., Goodman D. S. Effect of platelet-derived and endothelial cell-derived growth factors on the low density lipoprotein receptor pathway in cultured human fibroblasts. J Biol Chem. 1982 May 25;257(10):5392–5401. [PubMed] [Google Scholar]
  68. Wu G. Y., Wu C. H., Rifici V. A., Stockert R. J. Activity and regulation of low density lipoprotein receptors in a human hepatoblastoma cell line. Hepatology. 1984 Nov-Dec;4(6):1190–1194. doi: 10.1002/hep.1840040615. [DOI] [PubMed] [Google Scholar]
  69. Yamamoto T., Davis C. G., Brown M. S., Schneider W. J., Casey M. L., Goldstein J. L., Russell D. W. The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell. 1984 Nov;39(1):27–38. doi: 10.1016/0092-8674(84)90188-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES