Abstract
The direct effects of dexamethasone and caerulein on two pancreatic enzymes, amylase and chymotrypsin, were determined in AR4-2J cells cultured under serum-free conditions at two glucose concentrations (1.0 and 4.5 g/l). In the absence of any hormone, the higher glucose concentration resulted in a 1.6-1.8-fold increase in the basal levels of amylase and chymotrypsinogen. Dexamethasone (50 nM) increased the biosynthesis and mRNA levels of both enzymes at both glucose concentrations. However, dexamethasone had a more pronounced effect on amylase biosynthesis (5-fold induction) than on chymotrypsinogen biosynthesis (1.8-fold induction). The parallel increases in mRNA and protein indicated the existence of pre-translational regulation. This is in contrast with what was observed in serum-containing media, where a translational regulation of amylase biosynthesis took place, probably under the control of both glucose and some serum factors. By contrast, caerulein (10 nM) exerted a more specific action on chymotrypsinogen. The increases in chymotrypsinogen mRNA were 2.2- and 2.1-fold, and increases in chymotrypsin activity were 1.6- and 2.9-fold at 1.0 and 4.5 g of glucose/litre respectively. Thus the regulation by caerulein occurred mainly through the enhancement of chymotrypsinogen transcription and/or mRNA stabilization.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barrowman J. A., Mayston P. D. Proceedings: The trophic influence of cholecystokinin on the rat pancreas. J Physiol. 1974 Apr;238(1):73P–75P. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Dakka N., Wicker C., Puigserver A. Specific response of serine protease mRNA to a protein-free diet in the rat pancreas. Eur J Biochem. 1988 Sep 1;176(1):231–236. doi: 10.1111/j.1432-1033.1988.tb14273.x. [DOI] [PubMed] [Google Scholar]
- HUMMEL B. C. A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Can J Biochem Physiol. 1959 Dec;37:1393–1399. [PubMed] [Google Scholar]
- Logsdon C. D., Akana S. F., Meyer C., Dallman M. F., Williams J. A. Pancreatic acinar cell amylase gene expression: selective effects of adrenalectomy and corticosterone replacement. Endocrinology. 1987 Oct;121(4):1242–1250. doi: 10.1210/endo-121-4-1242. [DOI] [PubMed] [Google Scholar]
- Logsdon C. D. Glucocorticoids increase cholecystokinin receptors and amylase secretion in pancreatic acinar AR42J cells. J Biol Chem. 1986 Feb 15;261(5):2096–2101. [PubMed] [Google Scholar]
- Logsdon C. D., Moessner J., Williams J. A., Goldfine I. D. Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion in pancreatic acinar AR42J cells. J Cell Biol. 1985 Apr;100(4):1200–1208. doi: 10.1083/jcb.100.4.1200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Logsdon C. D., Perot K. J., McDonald A. R. Mechanism of glucocorticoid-induced increase in pancreatic amylase gene transcription. J Biol Chem. 1987 Nov 15;262(32):15765–15769. [PubMed] [Google Scholar]
- Logsdon C. D., Zhang J. C., Guthrie J., Vigna S., Williams J. A. Bombesin binding and biological effects on pancreatic acinar AR42J cells. Biochem Biophys Res Commun. 1987 Apr 14;144(1):463–468. doi: 10.1016/s0006-291x(87)80532-6. [DOI] [PubMed] [Google Scholar]
- MacDonald R. J., Crerar M. M., Swain W. F., Pictet R. L., Thomas G., Rutter W. J. Structure of a family of rat amylase genes. Nature. 1980 Sep 11;287(5778):117–122. doi: 10.1038/287117a0. [DOI] [PubMed] [Google Scholar]
- Meldolesi J. Effect of caerulein on protein synthesis and secretion in the guinea-pig pancreas. Br J Pharmacol. 1970 Dec;40(4):721–731. doi: 10.1111/j.1476-5381.1970.tb10649.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schick J., Kern H., Scheele G. Hormonal stimulation in the exocrine pancreas results in coordinate and anticoordinate regulation of protein synthesis. J Cell Biol. 1984 Nov;99(5):1569–1574. doi: 10.1083/jcb.99.5.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinhilber W., Poensgen J., Rausch U., Kern H. F., Scheele G. A. Translational control of anionic trypsinogen and amylase synthesis in rat pancreas in response to caerulein stimulation. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6597–6601. doi: 10.1073/pnas.85.18.6597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stratowa C., Rutter W. J. Selective regulation of trypsin gene expression by calcium and by glucose starvation in a rat exocrine pancreas cell line. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4292–4296. doi: 10.1073/pnas.83.12.4292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swarovsky B., Steinhilber W., Scheele G. A., Kern H. F. Coupled induction of exocrine proteins and intracellular compartments involved in the secretory pathway in AR4-2J cells by glucocorticoids. Eur J Cell Biol. 1988 Oct;47(1):101–111. [PubMed] [Google Scholar]
- Wicker C., Puigserver A., Rausch U., Scheele G., Kern H. Multiple-level caerulein control of the gene expression of secretory proteins in the rat pancreas. Eur J Biochem. 1985 Sep 16;151(3):461–466. doi: 10.1111/j.1432-1033.1985.tb09124.x. [DOI] [PubMed] [Google Scholar]